Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals with Bounded Kernel

被引:0
作者
Jianglong Wu
Qingguo Liu
机构
[1] Mudanjiang Normal University,
[2] University of Nova Gorica,undefined
来源
Ukrainian Mathematical Journal | 2014年 / 66卷
关键词
Compact Support; Orlicz Space; Degree Zero; Type Estimate; Bound Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Let μΩ,b→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mu}_{\varOmega, \overrightarrow{b}} $$\end{document} be a multilinear commutator generalized by the n-dimensional Marcinkiewicz integral with bounded kernel μΏ and let bj∈OscexpLrj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {b}_j\ \in Os{c_{\exp}}_{L^{r_j}} $$\end{document} , 1 ≤ j ≤ m. We prove the following weighted inequalities for ω ∈ A∞ and 0 < p < ∞: μΩfLpω≤CMfLpω,μΩ,b→fLpω≤CMLlogL1/rfLpω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\begin{array}{cc}\hfill {\left\Vert {\mu}_{\varOmega }(f)\right\Vert}_{L^p\left(\omega \right)}\le C{\left\Vert M(f)\right\Vert}_{L^p\left(\omega \right)},\hfill & \hfill \left\Vert {\mu}_{\varOmega, \overrightarrow{b}}(f)\right\Vert \hfill \end{array}}_{L^p\left(\omega \right)}\le C{\left\Vert {M}_{L{\left( \log L\right)}^{1/r}}(f)\right\Vert}_{L^p\left(\omega \right)}. $$\end{document}
引用
收藏
页码:602 / 616
页数:14
相关论文
共 25 条
  • [1] Stein EM(1958)On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz Trans. Amer. Math. Soc. 88 430-466
  • [2] Torchinsky A(1990)A note on the Marcinkiewicz integral Colloq. Math. 60/61 235-243
  • [3] Wang S(2004)Weighted weak type estimates for commutators of the Marcinkiewicz integrals Sci. China (Ser. A) 47 83-95
  • [4] Ding Y(2008)Weighted estimates for multilinear commutators of Marcinkiewicz integrals Acta Math. Sinica 24 1387-1400
  • [5] Lu S(2012)Weighted endpoint estimates for multilinear commutators of Marcinkiewicz integrals Acta Math. Sci. 32A 892-903
  • [6] Zhang P(2004)Estimates of Marcinkiewicz integrals with bounded homogeneous kernel of degree zero Integral Equat. Operator Theory 48 213-223
  • [7] Zhang P(2005)A note on end properties of Marcinkiewicz integral J. Korean Math. Soc. 42 1087-1100
  • [8] Zhang P(1995)Endpoint estimates for commutators of singular integral operators J. Funct. Anal. 128 163-185
  • [9] Wu JL(2002)Sharp weighted estimates for multilinear commutators J. London Math. Soc. 65 672-692
  • [10] Liu QG(1997)Sharp estimates for commutators of singular integrals via iterations of the Hardy–Littlewood maximal function J. Fourier Anal. Appl. 3 743-756