Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation

被引:1
|
作者
Rong An
机构
[1] Wenzhou University,College of Mathematics and Information Science
来源
关键词
Landau–Lifshitz equation; Crank–Nicolson scheme; Finite element method; Optimal error estimates; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the optimal error estimates of a linearized Crank–Nicolson scheme for the Landau–Lifshitz (LL) equation describing the evolution of spin fields in continuum ferromagnets. We present a rigorous analysis for the regularity of the local strong solution to LL equation with Neumann boundary conditions. The proof of the optimal error estimates are based upon an error splitting technique proposed by Li and Sun. Numerical results are provided to confirm our theoretical analysis.
引用
收藏
页码:1 / 27
页数:26
相关论文
共 50 条
  • [21] Unconditionally optimal error estimate of the Crank-Nicolson extrapolation Galerkin finite element method for Kuramoto-Tsuzuki equation
    Yang, Huaijun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [22] Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations
    Wang, Cheng
    Wang, Jilu
    Xia, Zeyu
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 767 - 789
  • [23] Error estimates for Landau-Lifshitz-Gilbert equation with magnetostriction
    Banas, L'ubomir
    Slodicka, Marian
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) : 1019 - 1039
  • [24] ERROR ESTIMATES OF CRANK-NICOLSON-TYPE DIFFERENCE SCHEMES FOR THE SUBDIFFUSION EQUATION
    Zhang, Ya-Nan
    Sun, Zhi-Zhong
    Wu, Hong-Wei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2302 - 2322
  • [25] A posteriori error estimates for the Crank-Nicolson method for parabolic equations
    Akrivis, G
    Makridakis, C
    Nochetto, RH
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 511 - 531
  • [26] A note on optimal H1-error estimates for Crank-Nicolson approximations to the nonlinear Schrodinger equation
    Henning, Patrick
    Warnegard, Johan
    BIT NUMERICAL MATHEMATICS, 2021, 61 (01) : 37 - 59
  • [27] Hysteresis in the Linearized Landau-Lifshitz Equation
    Chow, A.
    Morris, K. A.
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 4747 - 4752
  • [28] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289
  • [29] Analysis of a Crank-Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg-Landau equation
    Li, Xiaolin
    Cui, Xiyong
    Zhang, Shougui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [30] A Newton Linearized Crank-Nicolson Method for the Nonlinear Space Fractional Sobolev Equation
    Qin, Yifan
    Yang, Xiaocheng
    Ren, Yunzhu
    Xu, Yinghong
    Niazi, Wahidullah
    JOURNAL OF FUNCTION SPACES, 2021, 2021