Cellular automata and finite groups

被引:0
作者
Alonso Castillo-Ramirez
Maximilien Gadouleau
机构
[1] Universidad de Guadalajara,Departamento de Matemáticas
[2] CUCEI,School of Engineering and Computing Sciences
[3] Durham University,undefined
来源
Natural Computing | 2019年 / 18卷
关键词
Cellular automata; Invertible cellular automata; Finite groups; Finite monoids; Generating sets; MSC 68Q80; MSC 05E18; MSC 20M20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G and a finite set A, we study various algebraic aspects of cellular automata over the configuration space AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. In this situation, the set CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} of all cellular automata over AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document} is a finite monoid whose basic algebraic properties had remained unknown. First, we investigate the structure of the group of units ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}. We obtain a decomposition of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} into a direct product of wreath products of groups that depends on the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} of periodic configurations for conjugacy classes [H] of subgroups of G. We show how the numbers α[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{[H]}$$\end{document} may be computed using the Möbius function of the subgroup lattice of G, and we use this to improve the lower bound recently found by Gao, Jackson and Seward on the number of aperiodic configurations of AG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^G$$\end{document}. Furthermore, we study generating sets of CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}; in particular, we prove that CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document} cannot be generated by cellular automata with small memory set, and, when all subgroups of G are normal, we determine the relative rank of ICA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {ICA}(G;A)$$\end{document} on CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A)$$\end{document}, i.e. the minimal size of a set V⊆CA(G;A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \subseteq \mathrm {CA}(G;A)$$\end{document} such that CA(G;A)=⟨ICA(G;A)∪V⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {CA}(G;A) = \langle \mathrm {ICA}(G;A) \cup V \rangle$$\end{document}.
引用
收藏
页码:445 / 458
页数:13
相关论文
共 24 条
[1]  
Araújo J(2015)The rank of the semigroup of transformations stabilising a partition of a finite set Math Proc Camb Philos Soc 159 339-353
[2]  
Bentz W(2009)The rank of the endomorphism monoid of a uniform partition Semigroup Forum 78 498-510
[3]  
Mitchell JD(2016)Ranks of finite semigroups of one-dimensional cellular automata Semigroup Forum 93 347-362
[4]  
Schneider C(2015)The automorphism group of a shift of linear growth: beyond transitivity Forum Math Sigma 3 1-27
[5]  
Araújo J(1897)Ueber gruppen, deren sämmtliche theiler normaltheiler sind (German) Math Ann 48 548-561
[6]  
Schneider C(2016)Group colorings and bernoulli subflows Mem Am Math Soc 241 1-239
[7]  
Castillo-Ramirez A(1987)On the ranks of certain finite semigroups of transformations Math Proc Camb Philos Soc 101 395-403
[8]  
Gadouleau M(2014)The minimal number of generators of a finite semigroup Semigroup Forum 89 135-154
[9]  
Cyr V(2012)Large semigroups of cellular automata Ergod Theory Dyn Syst 32 1991-2010
[10]  
Bryna K(1989)On the möbius function of a finite group Rocky Mt J Math 19 1003-1034