Hamiltonian and Lagrangian theory of viscoelasticity

被引:0
作者
A. Hanyga
M. Seredyńska
机构
[1] University of Bergen,Department of Earth Sciences
[2] Polish Academy of Sciences,Institute of Fundamental Technological Research
来源
Continuum Mechanics and Thermodynamics | 2008年 / 19卷
关键词
Viscoelasticity; Poroelasticity; Relaxation; Energy conservation; Hamiltonian; Lagrangian; Poisson bracket; 46.35.+z; 45.20.dh; 45.20.Jj; 45.10.Hj;
D O I
暂无
中图分类号
学科分类号
摘要
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
引用
收藏
相关论文
共 54 条
[1]  
Agrawal O.P.(2002)Formulation of Euler–Lagrange equations for fractional variational problems J. Math. Anal. Appl. 272 368-379
[2]  
Bateman H.(1931)On dissipative systems and related variational principles Phys. Rep. 38 815-819
[3]  
Bauer P.S.(1931)Dissipative dynamical systems I Proc. Natl. Acad. Sci. 54 311-314
[4]  
Beris A.N.(2001)Bracket formulation as a source for the development of dynamic equations in continuum mechanics J. Non-Newton. Fluid Mech. 96 119-136
[5]  
Beris A.N.(1990)Poisson bracket formulation of viscoelastic flow equations of differential type: a unified approach J. Rheol. 34 503-538
[6]  
Edwards B.J.(1956)Mechanics of deformation of a porous viscoelastic anisotropic solid J. Appl. Phys. 27 459-467
[7]  
Biot M.A.(1964)On the determination of free energy in viscoelastic solids ZAMP 15 185-191
[8]  
Breuer S.(2002)A Hamiltonian model for linear friction in a homogeneous medium Commun. Math. Phys. 229 511-542
[9]  
Onat E.T.(2007)On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator J. Math. Phys. 48 032,701-A730
[10]  
Bruneau L.(2007)Fractional embedding of differential operators and Lagrangian systems J. Math. Phys. 48 033,504-L121