On changing highest weight theories for finite W-algebras

被引:0
|
作者
Jonathan Brown
Simon M. Goodwin
机构
[1] University of Birmingham,School of Mathematics
来源
关键词
Finite W-algebras; Representation theory;
D O I
暂无
中图分类号
学科分类号
摘要
A highest weight theory for a finite W-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document} was developed in Brundan et al. (Int. Math. Res. Not. 15:rnn051, 2008). This leads to a strategy for classifying the irreducible finite dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. The highest weight theory depends on the choice of a parabolic subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} leading to different parameterizations of the finite dimensional irreducible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. We explain how to construct an isomorphism preserving bijection between the parameterizing sets for different choices of parabolic subalgebra when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of type A, or when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of types C or D and e is an even multiplicity nilpotent element.
引用
收藏
页码:87 / 116
页数:29
相关论文
共 50 条
  • [41] Gelfand-Tsetlin representations of finite W-algebras
    Futorny, Vyacheslav
    Ramirez, Luis Enrique
    Zhang, Jian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (05)
  • [43] A remarkable connection between Yangians and finite W-algebras
    Ragoucy, E
    Sorba, P
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 22 - 24
  • [44] A Lax type operator for quantum finite W-algebras
    Alberto De Sole
    Victor G. Kac
    Daniele Valeri
    Selecta Mathematica, 2018, 24 : 4617 - 4657
  • [45] THE KAZHDAN-LUSZTIG CONJECTURE FOR FINITE W-ALGEBRAS
    DEVOS, K
    VANDRIEL, P
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (04) : 333 - 344
  • [46] QUANTIZATION AND REPRESENTATION-THEORY OF FINITE W-ALGEBRAS
    DEBOER, J
    TJIN, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (03) : 485 - 516
  • [47] A Lax type operator for quantum finite W-algebras
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4617 - 4657
  • [48] FINITE DIMENSIONAL ALGEBRAS AND HIGHEST WEIGHT CATEGORIES
    CLINE, E
    PARSHALL, B
    SCOTT, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 391 : 85 - 99
  • [49] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [50] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718