On changing highest weight theories for finite W-algebras

被引:0
作者
Jonathan Brown
Simon M. Goodwin
机构
[1] University of Birmingham,School of Mathematics
来源
Journal of Algebraic Combinatorics | 2013年 / 37卷
关键词
Finite W-algebras; Representation theory;
D O I
暂无
中图分类号
学科分类号
摘要
A highest weight theory for a finite W-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document} was developed in Brundan et al. (Int. Math. Res. Not. 15:rnn051, 2008). This leads to a strategy for classifying the irreducible finite dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. The highest weight theory depends on the choice of a parabolic subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} leading to different parameterizations of the finite dimensional irreducible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. We explain how to construct an isomorphism preserving bijection between the parameterizing sets for different choices of parabolic subalgebra when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of type A, or when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of types C or D and e is an even multiplicity nilpotent element.
引用
收藏
页码:87 / 116
页数:29
相关论文
共 44 条
  • [21] The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras
    Futorny, Vyacheslav
    Molev, Alexander
    Ovsienko, Serge
    ADVANCES IN MATHEMATICS, 2010, 223 (03) : 773 - 796
  • [22] Coset vertex operator algebras and W-algebras of A-type
    Arakawa, Tomoyuki
    Jiang, Cuipo
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (02) : 191 - 206
  • [23] Finite W-algebras of osp1′2n and ghost centers
    Genra, Naoki
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)
  • [24] Rationality of W-algebras: principal nilpotent cases
    Arakawa, Tomoyuki
    ANNALS OF MATHEMATICS, 2015, 182 (02) : 565 - 604
  • [25] On Modular Invariance of Quantum Affine W-Algebras
    Kac, Victor G.
    Wakimoto, Minoru
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (02)
  • [26] Highest weight theory for finite-dimensional graded algebras with triangular decomposition
    Bellamy, Gwyn
    Thiel, Ulrich
    ADVANCES IN MATHEMATICS, 2018, 330 : 361 - 419
  • [27] Screening operators and parabolic inductions for affine W-algebras
    Genra, Naoki
    ADVANCES IN MATHEMATICS, 2020, 369
  • [28] Whittaker vectors for W-algebras from topological recursion
    Borot, Gaetan
    Bouchard, Vincent
    Chidambaram, Nitin K.
    Creutzig, Thomas
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (02):
  • [29] W-algebras and chiral differential operators at the critical level
    Fortuna, Giorgia
    JOURNAL OF ALGEBRA, 2013, 385 : 164 - 191
  • [30] Finite W -algebras
    Losev, Ivan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1281 - 1307