共 50 条
On changing highest weight theories for finite W-algebras
被引:0
|作者:
Jonathan Brown
Simon M. Goodwin
机构:
[1] University of Birmingham,School of Mathematics
来源:
关键词:
Finite W-algebras;
Representation theory;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A highest weight theory for a finite W-algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$U(\mathfrak{g},e)$\end{document} was developed in Brundan et al. (Int. Math. Res. Not. 15:rnn051, 2008). This leads to a strategy for classifying the irreducible finite dimensional \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$U(\mathfrak{g},e)$\end{document}-modules. The highest weight theory depends on the choice of a parabolic subalgebra of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak{g}$\end{document} leading to different parameterizations of the finite dimensional irreducible \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$U(\mathfrak{g},e)$\end{document}-modules. We explain how to construct an isomorphism preserving bijection between the parameterizing sets for different choices of parabolic subalgebra when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak{g}$\end{document} is of type A, or when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak{g}$\end{document} is of types C or D and e is an even multiplicity nilpotent element.
引用
收藏
页码:87 / 116
页数:29
相关论文