On changing highest weight theories for finite W-algebras

被引:0
|
作者
Jonathan Brown
Simon M. Goodwin
机构
[1] University of Birmingham,School of Mathematics
来源
关键词
Finite W-algebras; Representation theory;
D O I
暂无
中图分类号
学科分类号
摘要
A highest weight theory for a finite W-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document} was developed in Brundan et al. (Int. Math. Res. Not. 15:rnn051, 2008). This leads to a strategy for classifying the irreducible finite dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. The highest weight theory depends on the choice of a parabolic subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} leading to different parameterizations of the finite dimensional irreducible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathfrak{g},e)$\end{document}-modules. We explain how to construct an isomorphism preserving bijection between the parameterizing sets for different choices of parabolic subalgebra when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of type A, or when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}$\end{document} is of types C or D and e is an even multiplicity nilpotent element.
引用
收藏
页码:87 / 116
页数:29
相关论文
共 50 条
  • [1] On changing highest weight theories for finite W-algebras
    Brown, Jonathan
    Goodwin, Simon M.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (01) : 87 - 116
  • [2] Highest Weight Theory for Finite W-Algebras
    Brundan, Jonathan
    Goodwin, Simon M.
    Kleshchev, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [3] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [4] Modular finite W-algebras
    Goodwin, Simon M.
    Topley, Lewis W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5811 - 5853
  • [5] Finite W-algebras for glN
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    ADVANCES IN MATHEMATICS, 2018, 327 : 173 - 224
  • [6] TRACES ON FINITE W-ALGEBRAS
    Etingof, Pavel
    Schedler, Travis
    TRANSFORMATION GROUPS, 2010, 15 (04) : 843 - 850
  • [7] Introduction to finite W-algebras
    Artamonov, D. V.
    BOLETIN DE MATEMATICAS, 2016, 23 (02): : 165 - 219
  • [8] Yangians and finite W-algebras
    Ragoucy, E
    Sorba, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1483 - 1487
  • [9] TRANSLATION FOR FINITE W-ALGEBRAS
    Goodwin, Simon M.
    REPRESENTATION THEORY, 2011, 15 : 307 - 346
  • [10] ON TOPOLOGIES OF FINITE W-ALGEBRAS
    SAKAI, S
    ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (02) : 236 - &