On Dynamic Output Feedback Guaranteed Cost Control of Uncertain Discrete-Delay Systems: LMI Optimization Approach

被引:0
作者
J. H. Park
机构
[1] Yeungnam University,School of Electrical Engineering and Computer Science
来源
Journal of Optimization Theory and Applications | 2004年 / 121卷
关键词
Discrete-delay systems; dynamic controllers; guaranteed cost stabilization; Lyapunov method; linear matrix inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a design problem of dynamic output feedback controller for guaranteed cost stabilization of discrete-delay systems with norm-bounded time-varying parameter uncertainties. A linear-quadratic cost function is considered as a performance measure for the closed-loop system. Based on the Lyapunov second method, several stability criteria for the existence of the controller are derived in terms of linear matrix inequalities (LMIs). The solutions of the LMIs can be obtained easily using existing efficient convex optimization techniques. A numerical example is given to illustrate the proposed method.
引用
收藏
页码:147 / 162
页数:15
相关论文
共 50 条
[31]   An LMI approach to positive real control for discrete time-delay systems [J].
Xu, Shengyuan ;
Lu, Junwei ;
Zhou, Shaosheng ;
Yang, Chengwu .
IMA Journal of Mathematical Control and Information, 2004, 21 (03) :261-273
[32]   An LMI Approach to Output Feedback Controller of Neutral Systems [J].
Susanto, Erwin ;
Halomoan, Junartho ;
Ishitobi, Mitsuaki .
2014 ELECTRICAL POWER, ELECTRONICS, COMMUNICATIONS, CONTROLS AND INFORMATICS SEMINAR (EECCIS), 2014, :78-81
[33]   Robust output feedback sliding mode control for uncertain discrete time systems [J].
Rahmani, Behrooz .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 24 :83-99
[34]   Model Predictive Control of a class of Uncertain Nonlinear Discrete Time Systems: The LMI approach [J].
Javanmardi, Hamid Reza ;
Dehghani, Maryam ;
Safavi, Ali Akbar ;
Abolpour, Roozbeh .
2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, :323-328
[35]   An output-feedback fuzzy approach to guaranteed cost control of vehicle lateral motion [J].
Ting, Chen-Sheng .
MECHATRONICS, 2009, 19 (03) :304-312
[36]   Multiobjective output-feedback control via LMI optimization [J].
Scherer, C ;
Gahinet, P ;
Chilali, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (07) :896-911
[37]   Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems:: An LMI approach [J].
Chen, BS ;
Tseng, CS ;
Uang, HJ .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (03) :249-265
[38]   Control and Synchronization for Uncertain Chaotic Systems with LMI Approach [J].
Deng, Lili ;
Xu, Junqun .
2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, :1695-1700
[39]   Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems [J].
Morais, Cecilia F. ;
Braga, Marcio F. ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (11) :2368-2383
[40]   Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach [J].
Kwon, O. M. ;
Park, J. H. ;
Lee, S. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (03) :521-532