共 50 条
Time-varying models for extreme values
被引:0
|作者:
Gabriel Huerta
Bruno Sansó
机构:
[1] University of New Mexico,Department of Mathematics and Statistics
[2] University of California,Department of Applied Mathematics and Statistics
来源:
Environmental and Ecological Statistics
|
2007年
/
14卷
关键词:
Spatio-temporal process;
Extreme values;
GEV distribution;
Process convolutions;
MCMC;
Ozone levels;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space–time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.
引用
收藏
页码:285 / 299
页数:14
相关论文