A quasi-Newton type method for equilibrium problems

被引:0
|
作者
Leonardo A. Sousa
Susana Scheimberg
Pedro Jorge S. Santos
Paulo Sérgio M. Santos
机构
[1] Universidade Federal do Rio de Janeiro (UFRJ),
[2] Universidade Federal do Delta do Parnaíba (UFDPar),undefined
来源
Numerical Algorithms | 2022年 / 89卷
关键词
Equilibrium problems; Quasi-Newton method; Constant rank constraint qualification; Computable generalized Jacobian;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we develop a quasi-Newton-type method for equilibrium problems based on the proximal Newton-type structure given in Santos et al. (Optimization Letters 12(5), 997-1009, 2018). We consider a family of matrices verifying a bounded deterioration property. We prove that the sequence generated by the algorithm is well defined and under suitable assumptions we establish the linear convergence of the algorithm. Numerical experiments are reported.
引用
收藏
页码:1129 / 1143
页数:14
相关论文
共 50 条
  • [31] Quasi-newton method for Lp multiple kernel learning
    Hu Qinghui
    Wei Shiwei
    Li Zhiyuan
    Liu Xiaogang
    NEUROCOMPUTING, 2016, 194 : 218 - 226
  • [32] A modified Quasi-Newton method for vector optimization problem
    Ansary, Md A. T.
    Panda, G.
    OPTIMIZATION, 2015, 64 (11) : 2289 - 2306
  • [33] ANALYSIS OF A SELF-SCALING QUASI-NEWTON METHOD
    NOCEDAL, J
    YUAN, YX
    MATHEMATICAL PROGRAMMING, 1993, 61 (01) : 19 - 37
  • [34] Quasi-Newton Method for Optimal Blank Allowance Balancing
    CHEN Manyi School of Mechatronic EngineeringWuhan University of TechnologyWuhan China
    武汉理工大学学报, 2006, (S3) : 858 - 860
  • [35] A quasi-Newton method in shape optimization for a transmission problem
    Kunstek, Petar
    Vrdoljak, Marko
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (06) : 2273 - 2299
  • [36] The modified quasi-Newton methods for solving unconstrained optimization problems
    Dehghani, R.
    Hosseini, M. M.
    Bidabadi, N.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2019, 32 (01)
  • [37] STOCHASTIC QUASI-NEWTON METHOD FOR NONCONVEX STOCHASTIC OPTIMIZATION
    Wang, Xiao
    Ma, Shiqian
    Goldfarb, Donald
    Liu, Wei
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 927 - 956
  • [38] QUASI-NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS: A SYSTEMATIC REVIEW
    Kumar K.
    Ghosh D.
    Upadhayay A.
    Yao J.C.
    Zhao X.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 291 - 321
  • [39] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Jingyong Tang
    Jinchuan Zhou
    Journal of Global Optimization, 2021, 80 : 415 - 438
  • [40] A modified quasi-Newton method for uncertain multiobjective optimization problems under a finite uncertainty set
    Kumar, Shubham
    Mahato, Nihar Kumar
    Ansary, Md Abu T.
    Ghosh, Debdas
    Treanta, Savin
    ENGINEERING OPTIMIZATION, 2024,