A quasi-Newton type method for equilibrium problems

被引:0
|
作者
Leonardo A. Sousa
Susana Scheimberg
Pedro Jorge S. Santos
Paulo Sérgio M. Santos
机构
[1] Universidade Federal do Rio de Janeiro (UFRJ),
[2] Universidade Federal do Delta do Parnaíba (UFDPar),undefined
来源
Numerical Algorithms | 2022年 / 89卷
关键词
Equilibrium problems; Quasi-Newton method; Constant rank constraint qualification; Computable generalized Jacobian;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we develop a quasi-Newton-type method for equilibrium problems based on the proximal Newton-type structure given in Santos et al. (Optimization Letters 12(5), 997-1009, 2018). We consider a family of matrices verifying a bounded deterioration property. We prove that the sequence generated by the algorithm is well defined and under suitable assumptions we establish the linear convergence of the algorithm. Numerical experiments are reported.
引用
收藏
页码:1129 / 1143
页数:14
相关论文
共 50 条
  • [1] A quasi-Newton type method for equilibrium problems
    Sousa, Leonardo A.
    Scheimberg, Susana
    Santos, Pedro Jorge S.
    Santos, Paulo Sergio M.
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1129 - 1143
  • [2] THE QUASI-NEWTON METHOD FOR THE COMPOSITE MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Peng, Jianwen
    Zhang, Xue-Qing
    Zhang, Tao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2557 - 2569
  • [3] A J-symmetric quasi-newton method for minimax problems
    Azam Asl
    Haihao Lu
    Jinwen Yang
    Mathematical Programming, 2024, 204 : 207 - 254
  • [4] A Quasi-Newton Penalty Barrier Method for Convex Minimization Problems
    Paul Armand
    Computational Optimization and Applications, 2003, 26 : 5 - 34
  • [5] A quasi-Newton penalty barrier method for convex minimization problems
    Armand, P
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 26 (01) : 5 - 34
  • [6] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [7] A J-symmetric quasi-newton method for minimax problems
    Asl, Azam
    Lu, Haihao
    Yang, Jinwen
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 207 - 254
  • [8] A generalized projection quasi-Newton method for nonlinear optimization problems
    Lai, YL
    Gao, ZY
    He, GP
    ANNALS OF OPERATIONS RESEARCH, 1999, 87 (0) : 353 - 362
  • [9] Phase equilibrium calculations with quasi-Newton methods
    Nichita, Dan Vladimir
    Petitfrere, Martin
    FLUID PHASE EQUILIBRIA, 2015, 406 : 194 - 208
  • [10] A proximal Newton-type method for equilibrium problems
    Santos, P. J. S.
    Santos, P. S. M.
    Scheimberg, S.
    OPTIMIZATION LETTERS, 2018, 12 (05) : 997 - 1009