A quasi-Newton type method for equilibrium problems

被引:0
作者
Leonardo A. Sousa
Susana Scheimberg
Pedro Jorge S. Santos
Paulo Sérgio M. Santos
机构
[1] Universidade Federal do Rio de Janeiro (UFRJ),
[2] Universidade Federal do Delta do Parnaíba (UFDPar),undefined
来源
Numerical Algorithms | 2022年 / 89卷
关键词
Equilibrium problems; Quasi-Newton method; Constant rank constraint qualification; Computable generalized Jacobian;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we develop a quasi-Newton-type method for equilibrium problems based on the proximal Newton-type structure given in Santos et al. (Optimization Letters 12(5), 997-1009, 2018). We consider a family of matrices verifying a bounded deterioration property. We prove that the sequence generated by the algorithm is well defined and under suitable assumptions we establish the linear convergence of the algorithm. Numerical experiments are reported.
引用
收藏
页码:1129 / 1143
页数:14
相关论文
共 48 条
[1]  
Belo Cruz JY(2013)A two-phase algorithm for a variational inequality formulation of equilibrium problems Optim. Theory Appl. 159 562-575
[2]  
Santos PSM(2015)Descent and penalization techniques for equilibrium problems with nonlinear constraints J. Optim. Theory Appl. 164 804-818
[3]  
Scheimberg S(1994)From optimization and variational inequalities to equilibrium problems Math. Stud. 63 123-145
[4]  
Bigi G(1977)Quasi-Newton Methods, motivation and theory SIAM Rev. Soc. Ind. Appl. Math. 19 46-89
[5]  
Passacantando M(1972)A minimax inequality and its applications Inequalities 3 103-113
[6]  
Blum E(2013)A generalized variational principle and its application to equilibrium problems J. Optim. Theory Appl. 156 213-231
[7]  
Oettli W(2009)Relaxation methods for generalized nash equilibrium problems with inexact line search J. Optim. Theory Appl. 143 159-183
[8]  
Dennis JE(2012)Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation Math. Program. 132 99-123
[9]  
Moré J(2019)New inertial algorithm for a class of equilibrium problems Numer. Algorithm. 80 1413-1436
[10]  
Fan K(2003)New existence results for equilibrium problems Nonlinear Anal. 116 621-635