Laplacian Controllability for Graphs Obtained by Some Standard Products

被引:0
作者
Milica Anđelić
Maurizio Brunetti
Zoran Stanić
机构
[1] Kuwait University,Department of Mathematics
[2] University of Naples ‘Federico II’,Department of Mathematics
[3] University of Belgrade,Faculty of Mathematics
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Laplacian eigenvalues; Controllability; Join; Cartesian product; Tensor product; Strong product; 05C50; 93B05; 93C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document} be the Laplacian matrix of a graph G with n vertices, and let b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {b}}$$\end{document} be a binary vector of length n. The pair (LG,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_G, {\mathbf {b}})$$\end{document} is said to be controllable (and we also say that G is Laplacian controllable for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {b}}$$\end{document}) if LG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_G$$\end{document} has no eigenvector orthogonal to b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {b}}$$\end{document}. In this paper we study the Laplacian controllability of joins, Cartesian products, tensor products and strong products of two graphs. Besides some theoretical results, we give an iterative construction of infinite families of controllable pairs (LG,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_G, {\mathbf {b}})$$\end{document}.
引用
收藏
页码:1593 / 1602
页数:9
相关论文
共 17 条
[1]  
Aguilar CO(2015)Graphs controllability classes for the Laplacian leader-follower dynamics IEEE Trans. Autom. Control 60 1611-1623
[2]  
Gharesifard B(2015)Laplacian controllability classes for threshold graphs Linear Algebra Appl. 471 575-586
[3]  
Aguilar CO(2015)On the Laplacian spectra of product graphs Appl. Anal. Discrete Math. 9 39-58
[4]  
Gharesifard B(1973)Algebraic connectivity of graphs Czech. Math. J. 23 298-305
[5]  
Barik S(1990)The Laplacian spectrum of a graph SIAM J. Matrix Anal. Appl. 11 218-238
[6]  
Bapat RB(2003)Some properties of Laplacian eigenvectors Bull. Cl. Sci. Math. Nat. Sci. Math. 28 1-6
[7]  
Pati S(1998)Laplacian graph eigenvectors Linear Algebra Appl. 278 221-236
[8]  
Fiedler M(2009)Controllability of multi-agent systems from a graph theoretic perspective SIAM J. Control Optim. 48 162-186
[9]  
Grone R(undefined)undefined undefined undefined undefined-undefined
[10]  
Merris R(undefined)undefined undefined undefined undefined-undefined