Superconducting circuit architecture for digital-analog quantum computing

被引:0
|
作者
Jing Yu
Juan Carlos Retamal
Mikel Sanz
Enrique Solano
Francisco Albarrán-Arriagada
机构
[1] Shanghai University,International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department
[2] Universidad de Santiago de Chile (USACH),Departamento de Física
[3] Center for the Development of Nanoscience and Nanotechnology,Department of Physical Chemistry
[4] University of the Basque Country UPV/EHU,IKERBASQUE
[5] Basque Foundation for Science,undefined
[6] Kipu Quantum,undefined
来源
EPJ Quantum Technology | 2022年 / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog blocks (parametrized multiqubit operations) to outperform digital quantum computing algorithms. Our design comprises a chain of superconducting charge qubits coupled by superconducting quantum interference devices (SQUIDs). Using magnetic flux control, we can activate/deactivate exchange interactions, double excitation/de-excitations, and others. As a paradigmatic example, we present an efficient simulation of an ℓ×h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell \times h$\end{document} fermion lattice (with 2<ℓ≤h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\ell \leq h$\end{document}), using only 2(2ℓ+1)2+24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2(2\ell +1)^{2}+24$\end{document} analog blocks. The proposed architecture design is feasible in current experimental setups for quantum computing with superconducting circuits, opening the door to useful quantum advantage with fewer resources.
引用
收藏
相关论文
共 50 条
  • [1] Superconducting circuit architecture for digital-analog quantum computing
    Yu, Jing
    Retamal, Juan Carlos
    Sanz, Mikel
    Solano, Enrique
    Albarran-Arriagada, Francisco
    EPJ QUANTUM TECHNOLOGY, 2022, 9 (01)
  • [2] Digital-analog quantum computing of fermion-boson models in superconducting circuits
    Kumar, Shubham
    Hegade, Narendra N.
    Visuri, Anne-Maria
    Bhargava, Balaganchi A.
    Hernandez, Juan F. R.
    Solano, E.
    Albarran-Arriagada, F.
    Barrios, G. Alvarado
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [3] Digital-analog quantum simulations with superconducting circuits
    Lamata, Lucas
    Parra-Rodriguez, Adrian
    Sanz, Mikel
    Solano, Enrique
    ADVANCES IN PHYSICS-X, 2018, 3 (01): : 1 - 28
  • [4] Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
    Lucas Lamata
    Scientific Reports, 7
  • [5] Digital-analog quantum computation
    Parra-Rodriguez, Adrian
    Lougovski, Pavel
    Lamata, Lucas
    Solano, Enrique
    Sanz, Mikel
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [6] Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
    Lamata, Lucas
    SCIENTIFIC REPORTS, 2017, 7
  • [7] DIGITAL-ANALOG MAGNETOMETER UTILIZING SUPERCONDUCTING SENSOR
    FORGACS, RL
    WARNICK, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1967, 38 (02): : 214 - &
  • [8] Quantum simulation of fermionic systems using hybrid digital-analog quantum computing approach
    Guseynov, N. M.
    Pogosov, W., V
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (28)
  • [9] Mitigating noise in digital and digital-analog quantum computation
    Garcia-Molina, Paula
    Martin, Ana
    de Andoin, Mikel Garcia
    Sanz, Mikel
    COMMUNICATIONS PHYSICS, 2024, 7 (01):
  • [10] Digital-analog quantum algorithm for the quantum Fourier transform
    Martin, Ana
    Lamata, Lucas
    Solano, Enrique
    Sanz, Mikel
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):