Hodge spaces of real toric varieties

被引:0
作者
Valerie Hower
机构
[1] University of Georgia,Department of Mathematics
来源
Collectanea mathematica | 2008年 / 59卷
关键词
Real toric variety; Hodge space; reflexive polytope; Smith-Thom; Primary 14M25; Secondary 55T99, 52B12;
D O I
暂无
中图分类号
学科分类号
摘要
We define the ℤ2 Hodge spacesHpq(Σ) of a rational fan Σ. If Σ is the normal fan of a reflexive polytope Δ then we use polyhedral duality to compute the Σ2 Hodge Spaces of Σ. In particular, if the cones of dimension at most e in the face fan Σ* of Δ are smooth then we computeHpq(Σ) forp <e − 1. If Σ* is a smooth fan then we completely determine the spacesHpq(Σ) and we showXΣ is maximal, meaning that the sum of the ℤ2 Betti numbers ofXΣ(ℝ) is equal to the sum of the ℤ2 Betti numbers ofXΣ(ℂ).
引用
收藏
页码:215 / 237
页数:22
相关论文
共 16 条
[1]  
Barthel G.(2002)Combinatorial intersection cohomology for fans Tohoku Math. J. 54 1-41
[2]  
Brasselet J.(1994)Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties J. Algebraic Geom. 3 493-535
[3]  
Fieseler K.(1999)On the classification of toric Fano 4-folds J. Math. Sci. (New York) 94 1021-1050
[4]  
Kaup L.(1981)Toric Fano threefolds Izv. Akad. Nauk SSSR Ser. Mat. 45 704-717
[5]  
Batyrev V.V.(2006)Is every toric variety an Mvariety? Manuscripta Math. 120 217-232
[6]  
Batyrev V.V.(2003)Intersection cohomology on nonrational polytopes Compositio Math. 135 245-278
[7]  
Batyrev V.V.(1997)The structure of the polytope algebra Tohoku Math. J. 49 1-32
[8]  
Bihan F.(1997)Intersection theory on toric varieties Topology 36 335-353
[9]  
Franz M.(undefined)undefined undefined undefined undefined-undefined
[10]  
McCrory C.(undefined)undefined undefined undefined undefined-undefined