Activity landscape image analysis using convolutional neural networks

被引:0
|
作者
Javed Iqbal
Martin Vogt
Jürgen Bajorath
机构
[1] Rheinische Friedrich-Wilhelms-Universität,Department of Life Science Informatics, B
来源
Journal of Cheminformatics | / 12卷
关键词
Activity landscape; Structure–activity relationships; Image processing; Image classification; Machine learning; Convolutional neural network; Landscape topology; Feature extraction;
D O I
暂无
中图分类号
学科分类号
摘要
Activity landscapes (ALs) are graphical representations that combine compound similarity and activity data. ALs are constructed for visualizing local and global structure–activity relationships (SARs) contained in compound data sets. Three-dimensional (3D) ALs are reminiscent of geographical maps where differences in landscape topology mirror different SAR characteristics. 3D AL models can be stored as differently formatted images and are thus amenable to image analysis approaches, which have thus far not been considered in the context of graphical SAR analysis. In this proof-of-concept study, 3D ALs were constructed for a variety of compound activity classes and 3D AL image variants of varying topology and information content were generated and classified. To these ends, convolutional neural networks (CNNs) were initially applied to images of original 3D AL models with color-coding reflecting compound potency information that were taken from different viewpoints. Images of 3D AL models were transformed into variants from which one-dimensional features were extracted. Other machine learning approaches including support vector machine (SVM) and random forest (RF) algorithms were applied to derive models on the basis of such features. In addition, SVM and RF models were trained using other features obtained from images through edge filtering. Machine learning was able to accurately distinguish between 3D AL image variants with different topology and information content. Overall, CNNs which directly learned feature representations from 3D AL images achieved highest classification accuracy. Predictive performance for CNN, SVM, and RF models was highest for image variants emphasizing topological elevation. In addition, SVM models trained on rudimentary images from edge filtering classified such images with high accuracy, which further supported the critical role of altitude-dependent topological features for image analysis and predictions. Taken together, the findings of our proof-of-concept investigation indicate that image analysis has considerable potential for graphical SAR exploration to systematically infer different SAR characteristics from topological features of 3D ALs.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [1] Activity landscape image analysis using convolutional neural networks
    Iqbal, Javed
    Vogt, Martin
    Bajorath, Juergen
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [2] Medical Image Analysis using Convolutional Neural Networks: A Review
    Syed Muhammad Anwar
    Muhammad Majid
    Adnan Qayyum
    Muhammad Awais
    Majdi Alnowami
    Muhammad Khurram Khan
    Journal of Medical Systems, 2018, 42
  • [3] Automated plankton image analysis using convolutional neural networks
    Luo, Jessica Y.
    Irisson, Jean-Olivier
    Graham, Benjamin
    Guigand, Cedric
    Sarafraz, Amin
    Mader, Christopher
    Cowen, Robert K.
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2018, 16 (12): : 814 - 827
  • [4] Medical Image Analysis using Convolutional Neural Networks: A Review
    Anwar, Syed Muhammad
    Majid, Muhammad
    Qayyum, Adnan
    Awais, Muhammad
    Alnowami, Majdi
    Khan, Muhammad Khurram
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
  • [5] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [6] An Analysis of Convolutional Neural Networks for Image Recognition
    He, Jun
    Liu, Yue
    Li, Shuai
    Shen, Jin-ming
    2017 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM), 2017, : 524 - 528
  • [7] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [8] Image Style Transfer Using Convolutional Neural Networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2414 - 2423
  • [9] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    Personal and Ubiquitous Computing, 2018, 22 : 1029 - 1037
  • [10] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    PERSONAL AND UBIQUITOUS COMPUTING, 2018, 22 (5-6) : 1029 - 1037