Computation of Topological Indices of Some Graphs

被引:0
作者
M. R. Darafsheh
机构
[1] University of Tehran,School of Mathematics, College of Science
来源
Acta Applicandae Mathematicae | 2010年 / 110卷
关键词
Graph distance; Topological index; Wiener index; Szeged index; PI-index; 05C12; 05CO5; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Wiener index of G is defined by W(G)=∑{x,y}⊆Vd(x,y), where d(x,y) is the length of the shortest path from x to y. The Szeged index of G is defined by Sz(G)=∑e=uv∈Enu(e|G)nv(e|G), where nu(e|G) (resp. nv(e|G)) is the number of vertices of G closer to u (resp. v) than v (resp. u). The Padmakar–Ivan index of G is defined by PI(G)=∑e=uv∈E[neu(e|G)+nev(e|G)], where neu(e|G) (resp. nev(e|G)) is the number of edges of G closer to u (resp. v) than v (resp. u). In this paper we find the above indices for various graphs using the group of automorphisms of G. This is an efficient method of finding these indices especially when the automorphism group of G has a few orbits on V or E. We also find the Wiener indices of a few graphs which frequently arise in mathematical chemistry using inductive methods.
引用
收藏
页码:1225 / 1235
页数:10
相关论文
共 42 条
  • [1] Deng H.(2008)PI indices of pericondensed benzenoid graphs J. Math. Chem. 43 19-25
  • [2] Chen S.(2001)Wiener index of trees: Theory and applications Acta Appl. Math. 66 211-249
  • [3] Dobrynin A.A.(1997)Congruence relations for the Szeged index of hexagonal chains Univ. Beogr. Publ. Elektrotehn. Fak. Ser. Mat. 8 106-113
  • [4] Entringer R.(2002)Wiener index of hexagonal systems Acta Appl. Math. 72 247-294
  • [5] Gutman I.(1976)Distance in graphs Czechoslav. Math. J. 26 283-296
  • [6] Dobrynin A.A.(1994)A formula for the Wiener number of trees and its extension to graphs containing cycles Graph Theory Notes, NY 27 9-15
  • [7] Gutman I.(1998)The Szeged index—a success story Graph Theory Notes, NY 34 37-44
  • [8] Dobrynin A.A.(1997)Fifty years of the Wiener index MATCH Commun. Math. Comput. Chem. 35 1-259
  • [9] Gutman I.(1994)Wiener numbers of dendrimers MATCH Commun. Math. Comput. Chem. 30 103-115
  • [10] Klavzar S.(2000)The automorphism group of a hypercube J. Univers. Comput. Sci. 6 136-138