共 52 条
- [11] Lun A.T.L., Marioni J.C., Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data, Biostatistics, 18, pp. 451-464, (2017)
- [12] Vallejos C.A., Richardson S., Marioni J.C., Beyond comparisons of means: Understanding changes in gene expression at the single-cell level, Genome Biol, 17, (2016)
- [13] Korthauer K.D., Et al., A statistical approach for identifying differential distributions in single-cell RNA-seq experiments, Genome Biol, 17, (2016)
- [14] Satija R., Farrell J.A., Gennert D., Schier A.F., Regev A., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol, 33, pp. 495-502, (2015)
- [15] Lun A.T.L., Chen Y., Smyth G.K., It?s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edger. in, Statistical Genomics (Eds. Mathé, E. & Davis, S.), pp. 391-416, (2016)
- [16] Paulson J.N., Stine O.C., Bravo H.C., Pop M., Differential abundance analysis for microbial marker-gene surveys, Nat. Methods, 10, pp. 1200-1202, (2013)
- [17] Bourgon R., Gentleman R., Huber W., Independent filtering increases detection power for high-Throughput experiments, Proc. Natl. Acad. Sci. USA, 107, pp. 9546-9551, (2010)
- [18] Ignatiadis N., Klaus B., Zaugg J.B., Huber W., Data-driven hypothesis weighting increases detection power in genome-scale multiple testing, Nat. Methods, 13, pp. 577-580, (2016)
- [19] Lappalainen T., Et al., Transcriptome and genome sequencing uncovers functional variation in humans, Nature, 501, pp. 506-511, (2013)
- [20] Elo L.L., Filen S., Lahesmaa R., Aittokallio T., Reproducibilityoptimized test statistic for ranking genes in microarray studies, IEEE/ACM Trans. Comput. Biol. Bioinform, 5, pp. 423-431, (2008)