Harnack Inequality and Applications for SDEs Driven by G-Brownian Motion

被引:0
作者
Fen-fen Yang
机构
[1] Tianjin University,Center for Applied Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2020年 / 36卷
关键词
Harnack inequality; shift Harnack inequality; stochastic differential equations; -Brownian motion; -expectation; 60H10; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, Wang’s Harnack and shift Harnack inequality for a class of stochastic differential equations driven by G-Brownian motion are established. The results generalize the ones in the linear expectation setting. Moreover, some applications are also given.
引用
收藏
页码:627 / 635
页数:8
相关论文
共 34 条
[1]  
Aida S(1998)Uniformly positivity improving property, Sobolev inequalities and spectral gaps J. Funct. Anal. 158 152-185
[2]  
Aida S(2002)On the small time asymptotics of diffusion processes on path groups Potential Anal. 16 67-78
[3]  
Zhang T(2001)Hypercontractivity of Hamilton-Jacobi equations J. Math. Pures Appl. 80 669-696
[4]  
Bobkov S(2011)Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes Potential Anal. 34 139-161
[5]  
Gentiland I(2001)Heat kernel estimates with application to compactness of manifolds Q. J. Math. 52 171-180
[6]  
Ledoux M(2014)Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by Stochastic Process. Appl. 124 1170-1195
[7]  
Denis L(2015)-Brownian motion Electron. Commun. Probab. 20 1-15
[8]  
Hu M(2005)Invariant and ergodic nonlinear expectations for G-diffusion processes Potential Anal. 22 61-84
[9]  
Peng S(2011)The parabolic Harnack inequality for the time dependent Ginzburg-Landautype SPDE and its application Stochastic Process. Appl. 121 1492-1508
[10]  
Gong F(2013)Stopping times and related Itô’s calculus with G-Brownian motion Stochastic Process. Appl. 123 1301-1318