Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

被引:0
|
作者
Aylin M. Deliormanlı
Rabia Konyalı
机构
[1] Manisa Celal Bayar University,Faculty of Engineering, Department of Metallurgical and Materials Engineering
关键词
PCL; Bioactive glass; Nanofibers; Electrospinning; Tissue engineering;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, bioactive glass and hydroxyapatite (HA)-containing poly(ε-caprolactone) (PCL) nanocomposite fiber mats were fabricated through electrospinning. For this purpose, microscale bioactive glass (silicate-based 45S5 and borate-based 13-93B3 compositions) or HA particles (at 10 wt%) were incorporated into the PCL matrix. The fabricated biocomposite fibers were investigated in terms of morphological and chemical properties. An in vitro mineralization assay in simulated body fluid was performed to understand the capability of the composite electrospun fibers to induce the formation of hydroxycarbonate apatite. Results showed that the diameter of the electrospun PCL-based fibrous scaffolds increased by the inclusion of bioactive glass or HA particles. All of the fibrous mats prepared in the study showed hydrophobic character. Relatively high contact angles (> 90°) obtained for fibrous scaffolds was attributed to the high porosity and surface roughness. Bioactive glass or HA addition to the PCL matrix enhanced the bioactivity of the fibrous scaffolds. The deposition rate of calcium phosphate-based material precipitates was higher on the surface of HA-containing samples compared to bioactive glass-containing PCL scaffolds. Additionally, mineralization ability of borate-based 13-93B3 glass-containing samples was higher compared to 45S5 glass-containing PCL fibers. The biocomposite fibrous scaffolds prepared in the study may find applications in wound healing as wound dressing and in bone tissue engineering.
引用
收藏
页码:247 / 256
页数:9
相关论文
共 50 条
  • [1] Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering
    Deliormanli, Aylin M.
    Konyali, Rabia
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2019, 55 (01) : 247 - 256
  • [2] Correction to: Bioactive glass/hydroxyapatite-containing electrospun poly(ε-caprolactone) composite nanofibers for bone tissue engineering
    Aylin M. Deliormanlı
    Rabia Konyalı
    Journal of the Australian Ceramic Society, 2019, 55 : 621 - 621
  • [3] Bioactive glass/hydroxyapatite-containing electrospun poly(ε-caprolactone) composite nanofibers for bone tissue engineering (vol 55, pg 247, 2019)
    Deliormanli, Aylin M.
    Konyali, Rabia
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2019, 55 (02) : 621 - 621
  • [4] Electrospun bioactive composite scaffolds of hydroxyapatite/poly(ε-caprolactone) for bone tissue engineering
    Li Lingli
    Li Guang
    Jiang Jianming
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1291 - 1294
  • [5] Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications
    Piatti, Elisa
    Miola, Marta
    Liverani, Liliana
    Verne, Enrica
    Boccaccini, Aldo R.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (11) : 1692 - 1709
  • [6] Hierarchically decorated electrospun poly(ε-caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering
    Jing, Xin
    Jin, Elizabeth
    Mi, Hao-Yang
    Li, Wan-Ju
    Peng, Xiang-Fang
    Turng, Lih-Sheng
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (12) : 4174 - 4186
  • [7] The electrospun poly(ε-caprolactone)/fluoridated hydroxyapatite nanocomposite for bone tissue engineering
    Johari, Narges
    Fathi, Mohammadhossein
    Fereshteh, Zeinab
    Kargozar, Saeid
    Samadikuchaksaraei, Ali
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1019 - 1026
  • [8] Electrospun Composites of Bioactive Glass/Pomegranate Seed Oil/Poly(ε-caprolactone) for Bone Tissue Engineering
    Akturk, Aysen
    FIBERS AND POLYMERS, 2025, : 1507 - 1517
  • [9] Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering
    de Souza, Joyce R.
    Cardoso, Lais M.
    de Toledo, Priscila T. A.
    Rahimnejad, Maedeh
    Kito, Leticia T.
    Thim, Gilmar P.
    Campos, Tiago M. B.
    Borges, Alexandre L. S.
    Bottino, Marco C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2024, 112 (05)
  • [10] Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering
    Doan Van Hong Thien
    Sheng Wen Hsiao
    Ming Hua Ho
    Chung Hsing Li
    Jia Lin Shih
    Journal of Materials Science, 2013, 48 : 1640 - 1645