Thomae Formula for General Cyclic Covers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {CP}}^1}$$\end{document}

被引:0
作者
Yaacov Kopeliovich
机构
[1] MEAG NY,Department of Mathematics
[2] Bronx Community College,undefined
关键词
14H42; 35Q15; theta functions; Thomae formula;
D O I
10.1007/s11005-010-0443-z
中图分类号
学科分类号
摘要
Let X be a general cyclic cover of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{CP}^{1}}$$\end{document} ramified at m points, λ1... λm. we define a class of non-positive divisors on X of degree g −1 supported in the pre images of the branch points on X, such that the Riemann theta function does not vanish on their image in J(X). We generalize the results of Bershadsky and Radul (Commun Math Phys 116:689–700, 1988), Nakayashiki (Publ Res Inst Math Sci 33(6):987–1015, 1997) and Enolskii and Grava (Lett Math Phys 76(2–3):187–214, 2006) and prove that up to a certain determinant of the non-standard periods of X, the value of the Riemann theta function at these divisors raised to a high enough power is a polynomial in the branch point of the curve X. Our approach is based on a refinement of Accola’s results for 3 cyclic sheeted cover (Accola, in Trans Am Math Soc 283:423–449, 1984) and a generalization of Nakayashiki’s approach explained in Nakayashiki (Publ Res Inst Math Sci 33(6):987–1015, 1997) for general cyclic covers.
引用
收藏
页码:313 / 333
页数:20
相关论文
共 12 条
[1]  
Accola R.(1984)On cyclic trigonal Riemann surfaces Trans. Am. Math. Soc. 283 423-449
[2]  
Bershadsky M.(1988)Fermionic fields on Commun. Math. Phys. 116 689-700
[3]  
Radul A.(1987) curves Int. J. Mod. Phys. A 2 165-178
[4]  
Bershadsky M.(2006)Conformal field theories with additional Lett. Math. Phys. 76 187-214
[5]  
Radul A.(2004) symmetry Int. Math. Res. Not. 32 1619-1683
[6]  
Enolskii V.(2008)Thomae type formulae for singular Int. J. Number Theory 4 1-9
[7]  
Grava T.(1997) curves Publ. Res. Inst. Math. Sci. 33 987-1015
[8]  
Enolskii V.(2000)Singular Commun. Math. Phys. 212 29-61
[9]  
Grava T.(undefined) curves and the Riemann Hilbert problem undefined undefined undefined-undefined
[10]  
Kopeliovich Y.(undefined)Theta constant identities at periods of covers of degree 3 undefined undefined undefined-undefined