Non-negative Spectral Measures and Representations of C*-Algebras

被引:0
作者
Aljaž Zalar
机构
[1] University of Ljubljana,Department of Mathematics, Faculty of Mathematics and Physics
来源
Integral Equations and Operator Theory | 2014年 / 79卷
关键词
28B05; 46G10; 46L05; 46L10; 46L51; 47A67; *-Representations; *-algebras; operator-valued measures;
D O I
暂无
中图分类号
学科分类号
摘要
Regular normalized W-valued spectral measures on a compact Hausdorff space X are in one-to-one correspondence with unital *-representations ρ:C(X,C)→W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho : C(X, \mathbb{C}) \to W}$$\end{document}, where W stands for a von Neumann algebra. In this paper we show that for every compact Hausdorff space X and every von Neumann algebras W1, W2 there is a one-to-one correspondence between unital *-representations ρ:C(X,W1)→W2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho : C(X, W_1) \to W_2}$$\end{document} and special B(W1, W2)-valued measures on X that we call non-negative spectral measures. Such measures are special cases of non-negative measures that we introduced in our previous paper (Cimprič and Zalar, J Math Anal Appl 401:307–316, 2013) in connection with moment problems for operator polynomials.
引用
收藏
页码:219 / 242
页数:23
相关论文
共 11 条
[1]  
Bastos M.A.(2007)Spectral measures in J. Funct. Anal. 242 86-126
[2]  
Fernandes C.A.(2013)*-algebras of singular integral operators with shifts J. Math. Anal. Appl. 401 307-316
[3]  
Karlovich Y.I.(1965)Moment problems for operator polynomials Bull. Am. Math. Soc. 71 546-550
[4]  
Cimprič J.(1976)The normality of time invariant, subordinate operators in a Hilbert space J. Funct. Anal. 21 88-121
[5]  
Zalar A.(1984)When is an operator the integral of a given spectral measure Ann. Mat. Pura Apl. 137 1-39
[6]  
Masani P.(1974)Integration with respect to operator-valued measures with applications to quantum estimation theory J. Multivariate. Anal. 4 166-209
[7]  
Masani P.(undefined)Operators as spectral integrals of operator-valued functions from the study of multivariate stationary stochastic processes undefined undefined undefined-undefined
[8]  
Rosenberg M.(undefined)undefined undefined undefined undefined-undefined
[9]  
Mitter S.K.(undefined)undefined undefined undefined undefined-undefined
[10]  
Young S.K.(undefined)undefined undefined undefined undefined-undefined