A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem

被引:0
|
作者
Daniele Boffi
Lucia Gastaldi
Rodolfo Rodríguez
Ivana Šebestová
机构
[1] Università di Pavia,Dipartimento di Matematica “F. Casorati”
[2] Università di Brescia,DICATAM Sez. di Matematica
[3] Universidad de Concepción,CI2MA, Departamento de Ingeniería Matemática
来源
Journal of Scientific Computing | 2019年 / 78卷
关键词
A posteriori error estimate; Maxwell’s eigenvalue problem; Nédélec finite elements;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a residual error indicator for the Nédélec finite element approximation of the eigenmodes of the Maxwell cavity problem. By using the known equivalence with a mixed problem we prove reliability and efficiency of the error indicator. Numerical results confirm the optimal behavior of an adaptive scheme based on the error indicator.
引用
收藏
页码:1250 / 1271
页数:21
相关论文
共 50 条
  • [1] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271
  • [2] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [3] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [4] A posteriori error estimates for a Maxwell type problem
    Anjam, I.
    Mali, O.
    Muzalevsky, A.
    Neittaanmaki, R.
    Repin, S.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (05) : 395 - 408
  • [5] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732
  • [6] A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem
    Zhang, Jun
    Luo, Zijiang
    Han, Jiayu
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 190 - 201
  • [7] A posteriori error estimates for Maxwell equations
    Schoeberl, Joachim
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 633 - 649
  • [8] A priori and a posteriori error estimates for the quad-curl eigenvalue problem
    Wang, Lixiu
    Zhang, Qian
    Sun, Jiguang
    Zhang, Zhimin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 1027 - 1051
  • [9] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [10] Functional Type A Posteriori Error Estimates for Maxwell's Equations
    Hannukainen, A.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 41 - 48