Biharmonic Obstacle Problem: Guaranteed and Computable Error Bounds for Approximate Solutions

被引:0
作者
D. E. Apushkinskaya
S. I. Repin
机构
[1] Saarland University,
[2] Peoples’Friendship University of Russia (RUDN University),undefined
[3] Steklov Institute of Mathematics at St. Petersburg,undefined
[4] University of Jyväskylä,undefined
来源
Computational Mathematics and Mathematical Physics | 2020年 / 60卷
关键词
variational inequalities; estimates of the distance to the exact solution; aposteriori estimates;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1823 / 1838
页数:15
相关论文
共 34 条
[1]  
Lions J.-L.(1967)Variational inequalities Commun. Pure Appl. Math. 20 493-519
[2]  
Stampacchia G.(1979)The obstacle problem for the biharmonic operator Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 151-184
[3]  
Caffarelli L. A.(1973)On the regularity of the solution of the biharmonic variational inequality Manuscr. Math. 9 91-103
[4]  
Friedman A.(1971)Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung Abh. Math. Sem. Univ. Hamburg 36 140-149
[5]  
Frehse J.(1973)The constrained elastic beam Meccanica 8 119-124
[6]  
Frehse J.(1977)Remarks on some fourth order variational inequalities Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 363-371
[7]  
Cimatti G.(1982)The two-obstacle problem for the biharmonic operator Pac. J. Math. 103 325-335
[8]  
Brézis H.(2019)Regularity of the free boundary in the biharmonic obstacle problem Calc. Var. Partial Differ. Equations 58 206-3350
[9]  
Stampacchia G.(2012)A quadratic SIAM J. Numer. Anal. 50 3329-167
[10]  
Caffarelli L. A.(1984) interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates IMA J. Numer. Anal. 4 127-485