Genome-wide prediction of cis-regulatory regions using supervised deep learning methods

被引:0
作者
Yifeng Li
Wenqiang Shi
Wyeth W. Wasserman
机构
[1] University of British Columbia,Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics
[2] Digital Technologies Research Centre,undefined
[3] National Research Council Canada,undefined
来源
BMC Bioinformatics | / 19卷
关键词
-regulatory region; Enhancer; Promoter; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Integrating Deep Learning Models with Genome-Wide Association Study-Based Identification Enhanced Phenotype Predictions in Group A Streptococcus
    Wang, Peng-Ying
    Chen, Zhi-Song
    Jiao, Xiaoguo
    Bao, Yun-Juan
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2025, 35
  • [42] Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences
    Yin, Yuehan
    Alqahtani, Yahya
    Feng, Jinjuan Heidi
    Chakraborty, Joyram
    McGuire, Michael P.
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 601 - 605
  • [43] Modelling the Publishing Process of Big Location Data Using Deep Learning Prediction Methods
    Yan, Yan
    Wang, Bingqian
    Sheng, Quan Z.
    Mahmood, Adnan
    Feng, Tao
    Xie, Pengshou
    ELECTRONICS, 2020, 9 (03)
  • [44] SHORT-TERM SEA SURFACE ELEVATION PREDICTION USING DEEP LEARNING METHODS
    Pang, Tak Yin
    Ding, Boyin
    Liu, Lingqiao
    Sergiienko, Nataliia
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 5, 2023,
  • [45] Prediction of air pollutants for air quality using deep learning methods in a metropolitan city
    Das, Bihter
    Dursun, Omer Osman
    Toraman, Suat
    URBAN CLIMATE, 2022, 46
  • [46] Analysis of earthquake detection using deep learning: Evaluating reliability and uncertainty in prediction methods
    Gamboa-Chacon, Sebastian
    Meneses, Esteban
    Chaves, Esteban J.
    COMPUTERS & GEOSCIENCES, 2025, 197
  • [47] Classification of Profit-Based Operating Regions for the Tennessee Eastman Process using Deep Learning Methods
    Agarwal, Piyush
    Budman, Hector
    IFAC PAPERSONLINE, 2019, 52 (01): : 556 - 561
  • [48] Different data-driven prediction of global ionospheric TEC using deep learning methods
    Tang, Jun
    Ding, Mingfei
    Yang, Dengpan
    Fan, Cihang
    Khonsari, Nasim
    Mao, Wenfei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [49] DeepTFBS: A Hybrid Model Using Deep Learning Methods for Transcription Factor Binding Sites Prediction
    Hatipoglu, Aysegul
    Altuntas, Volkan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024,
  • [50] Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
    Skrobek, Dorian
    Krzywanski, Jaroslaw
    Sosnowski, Marcin
    Kulakowska, Anna
    Zylka, Anna
    Grabowska, Karolina
    Ciesielska, Katarzyna
    Nowak, Wojciech
    ENERGIES, 2020, 13 (24)