Halloysite nanotubes as hydrogen storage materials

被引:1
|
作者
Jiao Jin
Yi Zhang
Jing Ouyang
Huaming Yang
机构
[1] Central South University,School of Minerals Processing and Bioengineering
[2] Central South University,Research Center for Mineral Materials
来源
关键词
Halloysite nanotubes (HNTs); Thermal treatment; Palladium modification; Acid treating; Hydrogen adsorption capacity;
D O I
暂无
中图分类号
学科分类号
摘要
The hydrogen adsorption capacities of halloysite nanotubes (HNTs), subjected to different treatments, were investigated at room temperature. The three different treatments included thermal, acid, and palladium modification. The hydrogen adsorption capacity of the HNTs was 0.436 % at 2.63 MPa and 298 K whereas those of the thermally treated HNTs, palladium-modified HNTs (Pd-HNTs), and acid-treated HNTs (A-HNTs), under the same conditions, were 0.263, 1.143, and 1.371 %, respectively. The hydrogen adsorption capacities of both HNTs and treated HNTs are among the highest values reported in the literature so far. Large surface areas were advantageous in promoting hydrogen adsorption via a physisorption mechanism, which was directly related to the aluminosilicate structure of HNTs. It was also possible to enhance the hydrogen adsorption capacity through a chemisorption or spillover mechanism by modifying HNTs with Pd. The HNTs and treated HNTs show potential as physisorption-based mediums for hydrogen storage at room temperature, in particular HNTs and A-HNTs show excellent stability and high hydrogen adsorption capacities.
引用
收藏
页码:323 / 331
页数:8
相关论文
共 50 条
  • [31] Nanotubes boost hydrogen storage
    不详
    NANOTECHNOLOGY, 2005, 16 (04)
  • [32] Hydrogen storage in carbon nanotubes
    Becher, M
    Haluska, M
    Hirscher, M
    Quintel, A
    Skakalova, V
    Dettlaff-Weglikovska, U
    Chen, X
    Hulman, M
    Choi, Y
    Roth, S
    Meregalli, V
    Parrinello, M
    Ströbel, R
    Jörissen, L
    Kappes, MM
    Fink, J
    Züttel, A
    Stepanek, I
    Bernierg, P
    COMPTES RENDUS PHYSIQUE, 2003, 4 (09) : 1055 - 1062
  • [33] Ca-Coated Boron Fullerenes and Nanotubes as Superior Hydrogen Storage Materials
    Li, Ming
    Li, Yafei
    Zhou, Zhen
    Shen, Panwen
    Chen, Zhongfang
    NANO LETTERS, 2009, 9 (05) : 1944 - 1948
  • [34] Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage
    Li, Yanan
    Zhou, Jie
    Liu, Yun
    Tang, Jian
    Tang, Weihua
    ELECTROCHIMICA ACTA, 2017, 245 : 504 - 511
  • [35] HYDROGEN STORAGE MATERIALS
    SHENOY, GK
    VICCARO, PJ
    DUNLAP, BD
    NIARCHOS, D
    KIERSTEAD, HK
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (03) : C114 - C114
  • [36] HYDROGEN STORAGE MATERIALS
    SHENOY, GK
    DUNLAP, BD
    VICCARO, PJ
    NIARCHOS, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 179 (MAR): : 102 - NUCL
  • [37] Hydrogen storage materials
    Kustov, Leonid M.
    Tarasov, Andrei L.
    Sung, Jae
    Godovsky, Dmitry Yu
    MENDELEEV COMMUNICATIONS, 2014, 24 (01) : 1 - 8
  • [38] Materials for hydrogen storage
    Chabal, Yves J.
    Tan, Kui
    Liu, Lihong
    Chopra, Irinder
    Veyan, Jean-Francois
    Li, Jing
    Thonhauser, Timo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [39] Hydrogen storage performance of HPSB hydrogen storage materials
    Zheng Xueping
    Yuan Xiangsheng
    Lai Xinyue
    Jia Runnan
    Zhu Yongsheng
    Zhang Zhihao
    Hou Xuzhao
    Zhao Yan
    Zhao Gang
    Peng Yiqiong
    CHEMICAL PHYSICS LETTERS, 2019, 734
  • [40] Hydrogen Storage Materials: Promising Materials for Kazakhstan's Hydrogen Storage Industry
    Abdimomyn, S.
    Malik, S.
    Skakov, M.
    Koyanbayev, Y.
    Miniyazov, A.
    Malchik, F.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2024, 26 (03) : 113 - 132