On the global existence of classical solutions for compressible nematic liquid crystal flows with vacuum

被引:0
作者
Yang Liu
机构
[1] Changchun Normal University,College of Mathematics
[2] Nanjing University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Compressible nematic liquid crystal flows; Cauchy problem; Global classical solution; Large initial energy; Vacuum; 35B45; 35Q35; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the Cauchy problem of compressible nematic liquid crystal flows in the whole space R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. We show that if, in addition, the conservation law of the total mass is satisfied (i.e., ρ0∈L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _0\in L^1$$\end{document}), then the global existence theorem with small density and L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^3$$\end{document}-norm of the gradient of d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_0$$\end{document} holds for any γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document}. It is worth mentioning that the initial total energy can be arbitrarily large and the initial vacuum is allowed. Thus, the result obtained particularly extends the one due to Li et al. (J Math Fluid Mech 20:2105–2145, 2018), where the global well-posedness of classical solutions with small energy was proved.
引用
收藏
相关论文
共 48 条
[1]  
Ding S(2012)Compressible hydrodynamic flow of liquid crystals in 1D Discrete Contin. Dyn. Syst. 32 539-563
[2]  
Lin J(2011)Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one Discrete Contin. Dyn. Syst. Ser. B 15 357-371
[3]  
Wang C(2012)Strong solutions of the compressible nematic liquid crystal flow J. Differ. Equ. 252 2222-2265
[4]  
Wen H(2012)Blow up criterion for compressible nematic liquid crystal flows in dimension three Arch. Ration. Mech. Anal. 204 285-311
[5]  
Ding S(2013)A Serrin criterion for compressible nematic liquid crystal flows Math. Methods Appl. Sci. 36 363-1375
[6]  
Wang C(2013)On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain J. Funct. Anal. 265 3369-3397
[7]  
Wen H(2014)Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions Arch. Ration. Mech. Anal. 214 403-451
[8]  
Huang T(1968)Some constitutive equations for liquid crystals Arch. Ration. Mech. Anal. 28 265-283
[9]  
Wang C(2018)Global existence of classical solutions with large oscillations and vacuum to the three dimensional compressible nematic liquid crystal flows J. Math. Fluid Mech. 20 2105-2145
[10]  
Wen H(1998)Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena Commun. Pure Appl. Math. 42 789-814