On the Cauchy problem for the two-component Camassa–Holm system

被引:1
作者
Guilong Gui
Yue Liu
机构
[1] Jiangsu University,Department of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
[3] University of Texas,Department of Mathematics
来源
Mathematische Zeitschrift | 2011年 / 268卷
关键词
Besov spaces; Blow-up; Local well-posedness; Two-component Camassa–Holm system; Wave-breaking; 35G25; 35L15; 35Q58;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the local well-posedness for the two-component Camassa–Holm system in a range of the Besov spaces. We also derive a wave-breaking mechanism for strong solutions. In addition, we determine the exact blow-up rate of such solutions to the system.
引用
收藏
页码:45 / 66
页数:21
相关论文
共 37 条
[1]  
Bony J.M.(1981)Calcul symbolique et propagation des singularités pour les q́uations aux drivées partielles non linéaires Ann. Sci. École Norm. Sup. 14 209-246
[2]  
Bressan A.(2007)Global conservative solutions of the Camassa–Holm equation Arch. Ration. Mech. Anal. 183 215-239
[3]  
Constantin A.(2007)Global dissipative solutions of the Camassa–Holm equation Anal. Appl. 5 1-27
[4]  
Bressan A.(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[5]  
Constantin A.(2006)A 2-Component generalization of the Camassa–Holm equation and its solutions Lett. Math. Phys. 75 1-15
[6]  
Camassa R.(2000)Global existence of solutions and breaking waves for a shallow water equation: a geometric approach Ann. Inst. Fourier (Grenoble) 50 321-362
[7]  
Holm D.(2006)The trajectories of particles in Stokes waves Invent. Math. 166 523-535
[8]  
Chen M.(1998)Wave breaking for nonlinear nonlocal shallow water equations Acta Math. 181 229-243
[9]  
Liu S.(2007)Particle trajectories in solitary water waves Bull. Amer. Math. Soc. 44 423-431
[10]  
Zhang Y.(2008)On an integrable two-component Camassa Holm shallow water system Phys. Lett. A 372 7129-7132