Results on Logarithmic Borel Exceptional Values of Meromorphic Functions with Their Difference Operators

被引:0
作者
H. Yu
X.-M. Li
机构
[1] Dalian Maritime University,School of Science
[2] University of Eastern Finland,Department of Physics and Mathematics
[3] Ocean University of China,Department of Mathematics
来源
Analysis Mathematica | 2022年 / 48卷
关键词
-difference operator; logarithmic Borel exceptional value; logarithmic order; meromorphic function; shift difference operator; primary 30D35; secondary 39A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence questions of logarithmic Borel exceptional values for meromorphic functions of finite logarithmic order concerning their q-difference or shift difference operators in the complex plane. We also obtain a precise asymptotic relation between N(r, f(z)) and N(r, f(qz)) (N(r, f(z + c)), respectively) in terms of finite logarithmic exponent of convergence of poles of f in the complex plane, where q and c are fixed finite non-zero constants.
引用
收藏
页码:895 / 909
页数:14
相关论文
共 18 条
[1]  
Barnett D C(2007)Nevanlinna theory for the Proc. Roy. Soc. Edinburgh, Sect. A 137 457-474
[2]  
Halburd R G(1962)-difference operator and meromorphic solutions of Proc. London Math. Soc. (3) 12 445-495
[3]  
Morgan W(1998)-difference equations Methods Appl. Anal. 5 248-258
[4]  
Korhonen R J(2008)The minimum modulus of small integral and subharmonic functions Ramanujan J. 16 105-129
[5]  
Barry P D(2006)Meromorphic solutions of some functional equations Trans. Amer. Math. Soc. 358 473-489
[6]  
Bergweiler W(2006)On the Nevanlinna characteristic of Ann. Acad. Sci. Fenn. Math. 31 463-478
[7]  
Ishizaki K(1997)( J. Math. Anal. Appl. 206 503-517
[8]  
Yanagihara N(2014)) and difference equations in the complex plane Bull. Korean Math. Soc. 51 83-98
[9]  
Chiang Y M(2010)On meromorphic functions with finite logarithmic order J. Math. Anal. Appl. 369 537-544
[10]  
Feng S J(undefined)Nevanlinna theory for the difference operator undefined undefined undefined-undefined