In this paper, we use the abstract theory of semilinear parabolic equations and a priori estimate techniques to prove the global existence and uniqueness of smooth solutions to the Cauchy problem for the following system of parabolic equations:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\{ \begin{gathered} \psi _t = - (\sigma - \alpha )\psi - \sigma \theta _x + \alpha \psi _{xx} , \hfill \\ \theta _t = - (1 - \beta )\theta + v\psi _x + (\psi \theta )_x + \beta \theta _{xx} . \hfill \\ \end{gathered} \right.$$
\end{document}