On a fractional reaction–diffusion equation

被引:0
作者
Bruno de Andrade
Arlúcio Viana
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Universidade Federal de Sergipe,Departamento de Matemática
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Integrodifferential equation; Self-similar solutions; Spatial decay; Fractional reaction–diffusion equation; 35K57; 45K05; 35R11; 35C06;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to study the global well-posedness and spatiotemporal asymptotic behavior of solutions for a fractional reaction–diffusion equation.
引用
收藏
相关论文
共 48 条
  • [1] Avdonin S(2013)Simultaneous temperature and flux controllability for heat equations with memory Q. Appl. Math. 71 339-368
  • [2] Pandolfi L(2005)Temporal and spatial decays for the Navier–Stokes equations Proc. R. Soc. Edinburgh Sect. A 135 461-477
  • [3] Bae H-O(2011)Existence, uniqueness and exponential decay: an evolution problem in heat conduction with memory Q. Appl. Math. 69 635-649
  • [4] Jin BJ(2005)Some remarks on materials with memory: heat conduction and viscoelasticity J. Nonlinear Math. Phys. 12 163-178
  • [5] Carillo S(2013)A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result Differ. Integral Equ. 26 1115-1125
  • [6] Carillo S(2014)Heat conduction with memory: a singular kernel problem Evol. Equ. Control Theory 3 399-410
  • [7] Carillo S(2016)Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity Electron. J. Differ. Equ. 2016 1-20
  • [8] Valente V(1989)Singular relaxation moduli and smoothing in three-dimensional viscoelasticity Trans. Am. Math. Soc. 314 381-404
  • [9] Vergara Caffarelli G(1989)Smoothing properties of linear Volterra integro-differential equations SIAM J. Math. Anal. 20 116-132
  • [10] Carillo S(2014)The state of fractional hereditary materials (FHM) Discret. Contin. Dyn. Syst. Ser. B 19 2065-2089