Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression

被引:0
|
作者
Man Wang
Yanqiu Zhang
Shuyong Jiang
机构
[1] Harbin Engineering University,College of Mechanical and Electrical Engineering
[2] Harbin Engineering University,College of Materials Science and Chemical Engineering
来源
Journal of Materials Engineering and Performance | 2022年 / 31卷
关键词
crystallographic orientation; dislocation mechanisms; molecular dynamics simulation; single-crystal copper; void shrinkage; void collapse;
D O I
暂无
中图分类号
学科分类号
摘要
Molecular dynamics simulations were performed to study the evolution of void along different crystallographic orientations of single-crystal copper under shock compression, including [11¯0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]$$\end{document}, [111]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[111]$$\end{document} and [100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[100]$$\end{document} orientations. For both [11¯0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]$$\end{document} and [111]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[111]$$\end{document} directions, the void only shrinks and does not collapse, whereas for [100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[100]$$\end{document} direction, the void can gradually shrink until it collapses completely. Dislocations react with each other to form sessile dislocations during the continuous loading of the shock waves, in both [11¯0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]$$\end{document} and [111] directions, and almost all the dislocations are found to be a6<110>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{a}{6} < 110 >$$\end{document} stair-rod partial dislocations which are of sessile type. However, for the [100] orientation, sessile dislocations are mainly a3<001>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{a}{3} < 001 >$$\end{document} Hirth partial dislocations. For [100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[100]$$\end{document} direction, the sessile dislocation density is the lowest among the three orientations. Therefore, shock compression along [100]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[100]$$\end{document} direction is more conducive to plastic deformation of the void. Dislocation slip is responsible for deformation mechanism of the void, where a6<112>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{a}{6} < 112 >$$\end{document} Shockley partial dislocations are firstly generated on the surface of the void, and then they continue to move and multiply, which shall lay the foundation for the formation of stacking faults. Stacking faults sweep through the crystal plane and consequently the void shrinks. This work gives an atomic-scale observation perspective of the evolution of micro-void defects in single-crystal copper under shock compression and provides a clearer explanation for the understanding of the dislocation evolution mechanism behind the deformation.
引用
收藏
页码:2991 / 3003
页数:12
相关论文
共 50 条
  • [1] Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression
    Wang, Man
    Zhang, Yanqiu
    Jiang, Shuyong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (04) : 2991 - 3003
  • [2] Pore Collapse in Single-Crystal TATB Under Shock Compression
    Nelms, Matthew D.
    Kroonblawd, Matthew P.
    Austin, Ryan A.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2019, 2020, 2272
  • [3] Shock induced deformation response of single crystal copper: Effect of crystallographic orientation
    Neogi, Anupam
    Mitra, Nilanjan
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 135 : 141 - 151
  • [4] Nanocrystallization in single-crystal copper under laser shock compression: A molecular dynamics study
    Xiong, Qi-lin
    Kitamura, Takayuki
    Li, Zhenhuan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 752 : 115 - 127
  • [5] Atomistic shock Hugoniot simulation of single-crystal copper
    Bringa, EM
    Cazamias, JU
    Erhart, P
    Stölken, J
    Tanushev, N
    Wirth, BD
    Rudd, RE
    Caturla, MJ
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) : 3793 - 3799
  • [6] Plastic deformation of [001]-oriented single-crystal iron under shock compression: Effects of void size
    Batoure, A.
    Amadou, N.
    Hassan, M. A. Nassirou
    Hassane, A. Moussa
    Adamou, I.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (14)
  • [7] Shock response of single crystal rhenium: Effect of crystallographic orientation
    Hu, Mingdong
    Xu, Chao
    Li, Pengwei
    Lang, Zhe
    Liu, Huaping
    Wang, Pei
    Liu, Chunmei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 4812 - 4824
  • [8] Molecular dynamics simulation of shock-induced collapse in single crystal copper with nano-void inclusion
    Yang Qi-Li
    Zhang Guang-Cai
    Xu Ai-Gu
    Zhao Yan-Hong
    Li Ying-Jun
    ACTA PHYSICA SINICA, 2008, 57 (02) : 940 - 946
  • [9] Modeling shock-induced void collapse in single-crystal Ta systems at the mesoscales
    Galitskiy, Sergey
    Mishra, Avanish
    Dongare, Avinash M.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 164
  • [10] Influence of Temperature on Void Collapse in Single Crystal Nickel under Hydrostatic Compression
    Prasad, Mahesh R. G.
    Neogi, Anupam
    Vajragupta, Napat
    Janisch, Rebecca
    Hartmaier, Alexander
    MATERIALS, 2021, 14 (09)