A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations

被引:0
|
作者
Jian-Wei Yu
Chun-Hua Zhang
Xin Huang
Xiang Wang
机构
[1] Nanchang Hangkong University,College of Mathematics and Information Science
[2] Nanchang University,Institute of Mathematics and Interdisciplinary Sciences
[3] University of Macau,Department of Mathematics
[4] Nanchang University,Department of Mathematics
关键词
Circulant preconditioner; Linear system; Spectrum; Preconditioned conjugated gradient method; Nonlinear space-fractional diffusion equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the fast algorithm for the numerical solution of the Riesz distributed-order nonlinear space-fractional diffusion equation. The finite difference method is employed to discretize the problem, the resulting system is symmetric positive definite Toeplitz matrix and then the fast Fourier transform can be used to reduce the computational cost of the matrix–vector multiplication. The preconditioned conjugate gradient method with a class of circulant preconditioners is proposed to solve the discretized linear system. Theoretically, we prove that the spectrum of the preconditioned matrix is clustering around 1, which can guarantee the superlinear convergence rate of the proposed methods. Finally, numerical experiments are carried out to demonstrate that our proposed method works very well.
引用
收藏
页码:537 / 562
页数:25
相关论文
共 50 条
  • [1] A class of preconditioner for solving the Riesz distributed-order nonlinear space-fractional diffusion equations
    Yu, Jian-Wei
    Zhang, Chun-Hua
    Huang, Xin
    Wang, Xiang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 537 - 562
  • [2] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096
  • [3] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [4] Symbol-based preconditioning for riesz distributed-order space-fractional diffusion equations
    Mazza M.
    Serra-Capizzano S.
    Usman M.
    Electronic Transactions on Numerical Analysis, 2021, 54 : 499 - 513
  • [5] SYMBOL-BASED PRECONDITIONING FOR RIESZ DISTRIBUTED-ORDER SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Usman, Muhammad
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2021, 54 : 499 - 513
  • [6] Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sormani, Rosita Luisa
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (03)
  • [7] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Xiangcheng Zheng
    Huan Liu
    Hong Wang
    Hongfei Fu
    Journal of Scientific Computing, 2019, 80 : 1395 - 1418
  • [8] An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions
    Zheng, Xiangcheng
    Liu, Huan
    Wang, Hong
    Fu, Hongfei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1395 - 1418
  • [9] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Chun-Hua Zhang
    Jian-Wei Yu
    Xiang Wang
    Numerical Algorithms, 2023, 92 : 1813 - 1836
  • [10] A fast second-order scheme for nonlinear Riesz space-fractional diffusion equations
    Zhang, Chun-Hua
    Yu, Jian-Wei
    Wang, Xiang
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1813 - 1836