On the stability of the behavior of random walks on groups

被引:30
作者
Ch. Pittet
L. Saloff-Coste
机构
[1] Université Paul Sabatier,CNRS, Laboratoire Emile Picard
[2] Université Paul Sabatier,CNRS, Statistique et Probabilités
[3] Cornell University,Department of Mathematics
关键词
60J15; 58G32; random walks; Cayley graphs; quasi-isometry; heat diffusion kernel; covering manifolds;
D O I
10.1007/BF02921994
中图分类号
学科分类号
摘要
We show that, for random walks on Cayley graphs, the long time behavior of the probability of return after 2n steps is invariant by quasi-isometry.
引用
收藏
页码:713 / 737
页数:24
相关论文
共 34 条
[1]  
Alexopoulos G.(1992)A lower estimate for central probabilities on polycyclic groups Canadian Math. J. 44 897-910
[2]  
Baldi P.(1977)Sur la classification des groupes récurrents CRAS, Série I 285 1103-1104
[3]  
Lohoué N.(1972)The degree of polynomial growth of finitely generated nilpotent groups Proc. London Math. Soc. 25 603-614
[4]  
Peyrière J.(1982)Amenability and the spectrum of the Laplacian Bull. Am. Math. Soc. 6 87-89
[5]  
Bass H.(1990)Jensen’s inequality in semi-finite von Neumann algebras J. Operator Theory 23 3-19
[6]  
Brooks R.(1982)A note on the isoperimetric constant Ann. Sci. École Norm. Sup. 15 213-230
[7]  
Brown L.(1987)Upper bounds for symmetric transition functions Ann. Inst. H. Poincaré, Prob. Stat. 23 245-287
[8]  
Kosaki H.(1982)Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 17 15-53
[9]  
Buser P.(1997)On-diagonal lower bounds for heat kernels and Markov chains Duke Math. J. 89 133-199
[10]  
Carlen E.(1990)Puissances d’un opérateur régularisant Ann. Inst. H. Poincaré, Prob. Slat. 26 419-436