A representation theorem for certain partially ordered commutative rings

被引:0
作者
Thomas Jacobi
机构
[1] Gorch-Fock-Str. 35,
[2] 70619 Stuttgart,undefined
[3] Germany (e-mail: jacobi@fmi.uni-konstanz.de) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 237卷
关键词
Continuous Function; Commutative Ring; Representation Theorem; Weak Topology; Hausdorff Space;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with 1, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P\subset A$\end{document} be a preordering of higher level (i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $0,1\in P, -1\not\in P, P+P\subset P, P\cdot P\subset P$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A^{2n}\subset P$\end{document} for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\in\N$\end{document}) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M\subset A$\end{document} be an archimedean P-module (i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $1\in M, -1\not\in M, M+M\subset M, P\cdot M\subset M$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\forall\,a\in A\;\exists\,n\in\N\;\; n-a\in M$\end{document}). We endow \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X(M):=\{\varphi\in{\rm Hom}(A,\R)\mid\varphi(M)\subset\R_+\}$\end{document} with the weak topology with respect to all mappings \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\widehat{a}:X(M)\rightarrow\R, \widehat{a}(\varphi):=\varphi(a)$\end{document} and consider the representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Phi_M:A\rightarrow{\cal C}(X(M),\R), a\mapsto\widehat{a}$\end{document}. We find that X(M) is a non-empty compact Hausdorff space. Further we prove that
引用
收藏
页码:259 / 273
页数:14
相关论文
empty
未找到相关数据