Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments

被引:0
|
作者
Yu Zhu
Zhirong Wang
Huan Bian
Junling Wang
Wei Bai
Tianfeng Gao
Jinlong Bai
Yuxin Zhou
机构
[1] Nanjing Tech University,College of Emergency Management
[2] Nanjing Tech University,Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering
[3] University of Surrey,Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences
来源
Journal of Thermal Analysis and Calorimetry | 2022年 / 147卷
关键词
Thermal runaway propagation; Oxygen concentration; Gas flow rate; Critical conditions;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal runaway (TR) propagation of lithium-ion batteries (LIBs) in air may cause fire, and argon can effectively inhibit LIBs with TR propagation. The oxygen concentration and gas flow rate are the important factors affecting the TR propagation. Hence, an experimental device for LIBs with TR propagation in air and argon environments in a confined space was established, and a series of experiments were carried out. Subsequently, the critical conditions of oxygen concentration and gas flow rate that inhibit the TR propagation of the cell are investigated. The study found that LIBs with TR propagation occur in an air environment, while argon gas has a good effect on inhibiting LIBs with TR propagation. The critical oxygen concentration for LIBs with TR propagation in an argon environment is between 2.5 and 5%. The critical gas flow rates for LIBs with TR propagation are greater than 24 L min−1 under air and are between 18 and 24 L min−1 under argon. It is firmly believed that this work can provide useful inspirations for the TR suppression of LIBs.
引用
收藏
页码:13699 / 13710
页数:11
相关论文
共 50 条
  • [21] Mitigating thermal runaway propagation for lithium-ion batteries by a novel integrated liquid cooling/aerogel strategies
    Lyu, Peizhao
    Chen, Guohe
    Liu, Xinjian
    Li, Menghan
    Rao, Zhonghao
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [22] Thermal runaway propagation characteristics of lithium-ion batteries with a non-uniform state of charge distribution
    Tian Ying
    She Yang
    Wu Jiafeng
    Chai Mu
    Huang Liansheng
    Journal of Solid State Electrochemistry, 2023, 27 : 2185 - 2197
  • [23] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [24] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22
  • [25] Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network
    Wang, Gongquan
    Kong, Depeng
    Ping, Ping
    He, Xiaoqin
    Lv, Hongpeng
    Zhao, Hengle
    Hong, Wanru
    APPLIED ENERGY, 2023, 334
  • [26] Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries
    Zou, Kaiyu
    Xu, Jie
    Zhao, Mengke
    Lu, Shouxiang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 1352 - 1361
  • [27] Propagation dynamics of the thermal runaway front in large-scale lithium-ion batteries: Theoretical and experiment validation
    Feng, Xuning
    Zhang, Fangshu
    Feng, Jing
    Jin, Changyong
    Wang, Huaibin
    Xu, Chengshan
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 225
  • [28] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [29] Thermal runaway propagation characteristics and preventing strategies under dynamic thermal transfer conditions for lithium-ion battery modules
    Zhang, Tao
    Qiu, Xiangyun
    Li, Miaomiao
    Yin, Yanxin
    Jia, Longzhou
    Dai, Zuoqiang
    Guo, Xiangxin
    Wei, Tao
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [30] Experimental study on suppressing thermal runaway propagation of lithium-ion batteries in confined space by various fire extinguishing agents
    Sun, Huanli
    Zhang, Lin
    Duan, Qiangling
    Wang, Shuyang
    Sun, Shijie
    Sun, Jinhua
    Wang, Qingsong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 167 : 299 - 307