Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments

被引:0
|
作者
Yu Zhu
Zhirong Wang
Huan Bian
Junling Wang
Wei Bai
Tianfeng Gao
Jinlong Bai
Yuxin Zhou
机构
[1] Nanjing Tech University,College of Emergency Management
[2] Nanjing Tech University,Jiangsu Key Laboratory of Urban and Industrial Safety, College of Safety Science and Engineering
[3] University of Surrey,Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences
关键词
Thermal runaway propagation; Oxygen concentration; Gas flow rate; Critical conditions;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal runaway (TR) propagation of lithium-ion batteries (LIBs) in air may cause fire, and argon can effectively inhibit LIBs with TR propagation. The oxygen concentration and gas flow rate are the important factors affecting the TR propagation. Hence, an experimental device for LIBs with TR propagation in air and argon environments in a confined space was established, and a series of experiments were carried out. Subsequently, the critical conditions of oxygen concentration and gas flow rate that inhibit the TR propagation of the cell are investigated. The study found that LIBs with TR propagation occur in an air environment, while argon gas has a good effect on inhibiting LIBs with TR propagation. The critical oxygen concentration for LIBs with TR propagation in an argon environment is between 2.5 and 5%. The critical gas flow rates for LIBs with TR propagation are greater than 24 L min−1 under air and are between 18 and 24 L min−1 under argon. It is firmly believed that this work can provide useful inspirations for the TR suppression of LIBs.
引用
收藏
页码:13699 / 13710
页数:11
相关论文
共 50 条
  • [11] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [12] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Changfa Tao
    Guangyu Li
    Jianbo Zhao
    Guang Chen
    Zhigang Wang
    Yejian Qian
    Xiaozhang Cheng
    Xiaoping Liu
    Journal of Thermal Analysis and Calorimetry, 2020, 142 : 1523 - 1532
  • [13] Preventing Thermal Runaway Propagation in Lithium-ion Batteries using a Passive Liquid Housing
    Lee, Seungmin
    Kwon, Minseo
    Kim, Youngsik
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [14] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Huaibin Wang
    Zhiming Du
    Ling Liu
    Zelin Zhang
    Jinyuan Hao
    Qinzheng Wang
    Shuang Wang
    Fire Technology, 2020, 56 : 2427 - 2440
  • [15] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Tao, Changfa
    Li, Guangyu
    Zhao, Jianbo
    Chen, Guang
    Wang, Zhigang
    Qian, Yejian
    Cheng, Xiaozhang
    Liu, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1523 - 1532
  • [16] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [17] Effect of flame heating on thermal runaway propagation of lithium-ion batteries in confined space
    Zhang, Yue
    Zhao, Hengle
    Wang, Gongquan
    Gao, Xinzeng
    Ping, Ping
    Kong, Depeng
    Yin, Xiaokang
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [18] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [19] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [20] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66