Effective algebraic independence of values of E-functions

被引:0
作者
S. Fischler
T. Rivoal
机构
[1] Université Paris-Saclay,CNRS, Laboratoire de mathématiques d’Orsay
[2] Institut Fourier,undefined
[3] Université Grenoble Alpes CNRS,undefined
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
-functions; Algebraic independence; Differential equation; Gröbner basis; Elimination; Algorithm; Primary 11J91; Secondary 13P10; 33E30; 34M05;
D O I
暂无
中图分类号
学科分类号
摘要
E-functions are entire functions with algebraic Taylor coefficients satisfying certain arithmetic conditions, and which are also solutions of linear differential equations with coefficients in Q¯(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb Q}(z)$$\end{document}. They were introduced by Siegel (Über einige Anwendungen diophantischer Approximationen, vol. 1. S. Abhandlungen Akad, Berlin, 1929) to generalize the Diophantine properties of the exponential and the Bessel functions. The Siegel–Shidlovskii theorem (1956) deals with the algebraic (in)dependence of values at algebraic points of E-functions solutions of a differential system. In this paper, we present an algorithm to perform the following three tasks. Given as inputs some E-functions F1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(z)$$\end{document}, ..., Fp(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p(z)$$\end{document}, (1) it computes a system of generators of the ideal of polynomial relations between F1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(z)$$\end{document}, ..., Fp(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p(z)$$\end{document} with coefficients in Q¯(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb Q}(z)$$\end{document}; (2) given any α∈Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \overline{\mathbb Q}$$\end{document}, it computes a system of generators of the ideal of polynomial relations between the values F1(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(\alpha )$$\end{document}, ..., Fp(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p(\alpha )$$\end{document} with coefficients in Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb Q}$$\end{document}; (3) if F1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(z)$$\end{document}, ..., Fp(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p(z)$$\end{document} are algebraically independent over Q¯(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb Q}(z)$$\end{document}, it determines the finite set of all α∈Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \overline{\mathbb Q}$$\end{document} such that the values F1(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(\alpha )$$\end{document}, ..., Fp(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_p(\alpha )$$\end{document} are algebraically dependent over Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb Q}$$\end{document}. The existence of this algorithm relies on a variant of the Hrushovski–Feng algorithm (to compute polynomial relations between solutions of differential systems) and on Beukers’ lifting theorem (an optimal refinement of the Nesterenko–Shidlovskii theorem) in order to reduce these problems to an effective elimination procedure in multivariate polynomial rings. The latter is then performed using Gröbnerbasis.
引用
收藏
相关论文
共 17 条
[1]  
Adamczewski B(2018)Exceptional values of E-functions at algebraic points Bull. Lond. Math. Soc. 50 697-908
[2]  
Rivoal T(2000)Séries Gevrey de type arithmétique Ann. Math. 151 705-740
[3]  
André Y(2014). Théorèmes de pureté et de dualité Ann. Sci. ENS 47 449-467
[4]  
André Y(1985)Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence Ann. Sci. ENS 18 181-192
[5]  
Bertrand D(2006)Équations différentielles linéaires et majorations de multiplicités Ann. Math. 163 369-379
[6]  
Beukers F(2021)A refined version of the Siegel–Shidlovskii theorem Bull. Lond. Math. Soc. 53 53-62
[7]  
Beukers F(2022)Explicit degree-bounds for factors of linear differential operators J. Symb. Comput. 112 122-163
[8]  
Bostan A(2015)Computing the Lie algebra of the differential Galois group: the reducible case Adv. Appl. Math. 65 1-37
[9]  
Rivoal T(2002)Hrushovski’s algorithm for computing the Galois group of a linear differential equation Banach Center Publ. 58 97-138
[10]  
Salvy B(2013)Computing the Galois group of a linear differential equation J. Syst. Sci. Complex. 26 470-482