Impulsive differential equations involving general conformable fractional derivative in Banach spaces

被引:0
|
作者
Jin Liang
Yunyi Mu
Ti-Jun Xiao
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences
[2] Shanghai Dianji University,Direction of Applied Mathematics, School of Arts and Sciences
[3] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
关键词
General conformable fractional derivative; Impulsive; Sobolev-type integro-differential equations; -periodic; Delay evolution equations; Primary 26A33; Secondary 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with two classes of impulsive equations involving the general conformable fractional derivative in Banach spaces: (1) impulsive Sobolev-type integro-differential equations with the general conformable fractional derivative, (2) impulsive delay evolution equations with the general conformable fractional derivative. By combining the generalized Laplace transform and the properties of the general conformable fractional derivative, we present a proper definition of mild solutions for the impulsive integro-differential equations with the general conformable fractional derivative. In view of this definition, we obtain a new existence theorem of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for a normal fractional inhomogeneous evolution equation with the general conformable fractional derivative (Theorem 2.3) which will be used to study the (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations with the general conformable fractional derivative. Then we establish existence and uniqueness theorems for the impulsive integro-differential equations with the general conformable fractional derivative. Next, we derive existence theorems of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations involving the general conformable fractional derivative. Finally, applications are also given to illustrate our abstract results.
引用
收藏
相关论文
共 50 条
  • [41] Asymptotic behavior of conformable fractional impulsive partial differential equations
    Logaarasi, K.
    Sadhasivam, V
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 669 - 681
  • [42] IMPULSIVE CONFORMABLE FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH POISSON JUMPS
    Ahmed, Hamdy M.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 2073 - 2080
  • [43] INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL IMPULSIVE INTEGRO DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Anguraj, A.
    Kasthuri, M.
    Karthikeyan, P.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 56 - 67
  • [44] A New Class of Coupled Systems of Nonlinear Hyperbolic Partial Fractional Differential Equations in Generalized Banach Spaces Involving the ψ-Caputo Fractional Derivative
    Baitiche, Zidane
    Derbazi, Choukri
    Benchohra, Mouffak
    Zhou, Yong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [45] Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations
    Gao, Feng
    Chi, Chunmei
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [46] UPPER AND LOWER SOLUTIONS METHOD FOR IMPULSIVE DIFFERENTIAL EQUATIONS INVOLVING THE CAPUTO FRACTIONAL DERIVATIVE
    Agarwal, R. P.
    Benchohra, M.
    Hamani, S.
    Pinelas, S.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 53 : 1 - 12
  • [47] Double Perturbations for Impulsive Differential Equations in Banach Spaces
    Chen, Pengyu
    Li, Yongxiang
    Zhang, Xuping
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (05): : 1065 - 1077
  • [48] On summability, integrability and impulsive differential equations in Banach spaces
    Heikkila, Seppo V.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [49] On summability, integrability and impulsive differential equations in Banach spaces
    Seppo V Heikkilä
    Boundary Value Problems, 2013
  • [50] On Inhomogeneous Fractional Differential Equations in Banach Spaces
    Li, Kexue
    Peng, Jigen
    Gao, Jinghuai
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (04) : 415 - 429