Impulsive differential equations involving general conformable fractional derivative in Banach spaces

被引:0
|
作者
Jin Liang
Yunyi Mu
Ti-Jun Xiao
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences
[2] Shanghai Dianji University,Direction of Applied Mathematics, School of Arts and Sciences
[3] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
关键词
General conformable fractional derivative; Impulsive; Sobolev-type integro-differential equations; -periodic; Delay evolution equations; Primary 26A33; Secondary 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with two classes of impulsive equations involving the general conformable fractional derivative in Banach spaces: (1) impulsive Sobolev-type integro-differential equations with the general conformable fractional derivative, (2) impulsive delay evolution equations with the general conformable fractional derivative. By combining the generalized Laplace transform and the properties of the general conformable fractional derivative, we present a proper definition of mild solutions for the impulsive integro-differential equations with the general conformable fractional derivative. In view of this definition, we obtain a new existence theorem of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for a normal fractional inhomogeneous evolution equation with the general conformable fractional derivative (Theorem 2.3) which will be used to study the (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations with the general conformable fractional derivative. Then we establish existence and uniqueness theorems for the impulsive integro-differential equations with the general conformable fractional derivative. Next, we derive existence theorems of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations involving the general conformable fractional derivative. Finally, applications are also given to illustrate our abstract results.
引用
收藏
相关论文
共 50 条
  • [31] Existence of Fractional Impulsive Functional Integro-Differential Equations in Banach Spaces
    Chalishajar, Dimplekumar
    Ravichandran, Chokkalingam
    Dhanalakshmi, Shanmugam
    Murugesu, Rangasamy
    APPLIED SYSTEM INNOVATION, 2019, 2 (02) : 1 - 17
  • [32] Solvability of boundary value problems for impulsive fractional differential equations in Banach spaces
    Fang Li
    Huiwen Wang
    Advances in Difference Equations, 2014
  • [33] Controllability of Impulsive Fractional Functional Integro-Differential Equations in Banach Spaces
    Ravichandran, C.
    Trujillo, J. J.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [34] Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces
    Tran Dinh Ke
    Do Lan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 96 - 121
  • [35] Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces
    Al Nuwairan, Muneerah
    Ibrahim, Ahmed Gamal
    AIMS MATHEMATICS, 2023, 8 (05): : 11752 - 11780
  • [36] Antiperiodic Boundary Value Problems for Impulsive Fractional Functional Differential Equations via Conformable Derivative
    Wang, Jingfeng
    Bai, Chuanzhi
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [37] On Implicit Impulsive Conformable Fractional Differential Equations with Infinite Delay in b-Metric Spaces
    Krim, Salim
    Salim, Abdelkrim
    Abbas, Said
    Benchohra, Mouffak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (04) : 2579 - 2592
  • [38] On Implicit Impulsive Conformable Fractional Differential Equations with Infinite Delay in b-Metric Spaces
    Salim Krim
    Abdelkrim Salim
    Saïd Abbas
    Mouffak Benchohra
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2579 - 2592
  • [39] Asymptotic behavior of conformable fractional impulsive partial differential equations
    Logaarasi, K.
    Sadhasivam, V.
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 669 - 681
  • [40] INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Bolat, Yasar
    Raja, Thangaraj
    Logaarasi, Kandhasamy
    Sadhasivam, Vadivel
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 815 - 831