Impulsive differential equations involving general conformable fractional derivative in Banach spaces

被引:0
|
作者
Jin Liang
Yunyi Mu
Ti-Jun Xiao
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences
[2] Shanghai Dianji University,Direction of Applied Mathematics, School of Arts and Sciences
[3] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
关键词
General conformable fractional derivative; Impulsive; Sobolev-type integro-differential equations; -periodic; Delay evolution equations; Primary 26A33; Secondary 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with two classes of impulsive equations involving the general conformable fractional derivative in Banach spaces: (1) impulsive Sobolev-type integro-differential equations with the general conformable fractional derivative, (2) impulsive delay evolution equations with the general conformable fractional derivative. By combining the generalized Laplace transform and the properties of the general conformable fractional derivative, we present a proper definition of mild solutions for the impulsive integro-differential equations with the general conformable fractional derivative. In view of this definition, we obtain a new existence theorem of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for a normal fractional inhomogeneous evolution equation with the general conformable fractional derivative (Theorem 2.3) which will be used to study the (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations with the general conformable fractional derivative. Then we establish existence and uniqueness theorems for the impulsive integro-differential equations with the general conformable fractional derivative. Next, we derive existence theorems of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations involving the general conformable fractional derivative. Finally, applications are also given to illustrate our abstract results.
引用
收藏
相关论文
共 50 条
  • [21] A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces
    JinRong Wang
    AG Ibrahim
    D O’Regan
    Yong Zhou
    Advances in Difference Equations, 2017
  • [22] A general class of noninstantaneous impulsive fractional differential inclusions in Banach spaces
    Wang, JinRong
    Ibrahim, A. G.
    O'Regan, D.
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [23] Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces
    Hammoumi, Ibtissem
    Hammouche, Hadda
    Salim, Abdelkrim
    Benchohra, Mouffak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 637 - 650
  • [24] Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces
    Ibtissem Hammoumi
    Hadda Hammouche
    Abdelkrim Salim
    Mouffak Benchohra
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 637 - 650
  • [25] The fractional differential equations with uncertainty by conformable derivative
    Harir, Atimad
    Melliani, Said
    Chadli, Lalla Saadia
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 557 - 571
  • [26] Nonlocal integro-differential equations of Sobolev type in Banach spaces involving ψ-Caputo fractional derivative
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-Jun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [27] General fractional differential equations of order and Type in Banach spaces
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Gao, Jing-Huai
    SEMIGROUP FORUM, 2017, 94 (03) : 712 - 737
  • [28] Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces
    Tran Dinh Ke
    Do Lan
    Fractional Calculus and Applied Analysis, 2014, 17 : 96 - 121
  • [29] Solvability of boundary value problems for impulsive fractional differential equations in Banach spaces
    Li, Fang
    Wang, Huiwen
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [30] Impulsive Fractional Differential Equations with p-Laplacian Operator in Banach Spaces
    Tan, Jingjing
    Zhang, Kemei
    Li, Meixia
    JOURNAL OF FUNCTION SPACES, 2018, 2018