The Geometrical Nature of the Cosmological Inflation in the Framework of the Weyl-Dirac Conformal Gravity Theory

被引:0
作者
Francesco De Martini
Enrico Santamato
机构
[1] Accademia dei Lincei,Dipartimento di Fisica
[2] Università Federico II,undefined
来源
International Journal of Theoretical Physics | 2017年 / 56卷
关键词
Differential geometry; General relativity; Cosmology;
D O I
暂无
中图分类号
学科分类号
摘要
The nature of the scalar field responsible for the cosmological inflation, the “inflaton”, is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved space-time. The Euler-Lagrange theory based on a scalar-tensor Weyl-Dirac Lagrangian leads straightforwardly to the Einstein equation admitting as a source the characteristic energy-momentum tensor of the inflaton field. Within the dynamics of the inflation, e.g. in the slow roll transition from a “false” toward a “true vacuum”, the inflaton’s geometry implies a temperature driven symmetry change between a highly symmetrical “Weylan” to a low symmetry “Riemannian” scenario. Since the dynamics of the Weyl curvature scalar, constructed over differentials of the inflaton field, has been found to account for the quantum phenomenology at the microscopic scale, the present work suggests interesting connections between the “micro” and the “macro” aspects of our Universe.
引用
收藏
页码:4105 / 4111
页数:6
相关论文
共 26 条
[1]  
Starobinsky AA(1980)undefined Phys. Lett. B91 99-102
[2]  
Guth AH(1981)undefined Phys. Rev. D 23 347-undefined
[3]  
Linde AD(1982)undefined Phys. Lett. B 108 389-undefined
[4]  
Albrecht A(1982)undefined Phys. Rev. Lett. 48 1220-undefined
[5]  
Steinhardt PJ(1973)undefined Proc. R. Soc. London, Ser. A 333 403-undefined
[6]  
Dirac PAM(1973)undefined Commun. Math. Phys. 32 119-undefined
[7]  
Ehlers J(2012)undefined Gen. Relativ. Gravit. 44 1581-undefined
[8]  
Schild A(2015)undefined Int. J. Geom. Meth. Mod. Phys. 12 1550044-undefined
[9]  
Trautman A(1982)undefined Ann. Phys. 141 316-undefined
[10]  
Fatibene L(1991)undefined Phys. Rev. D 43 3358-undefined