Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent

被引:0
作者
Min Li
Xinjie Dai
Chengming Huang
机构
[1] China University of Geosciences,School of Mathematics and Physics and Center for Mathematical Sciences
[2] Academy of Mathematics and Systems Science,Institute of Computational Mathematics, Scientific/Engineering Computing
[3] Chinese Academy of Sciences,School of Mathematics and Statistics and Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[4] Huazhong University of Science and Technology,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Weakly singular stochastic Volterra integral equations with variable exponent; Exponential-sum-approximation; Euler–Maruyama method; Fast Euler–Maruyama method; Strong convergence; Multilevel Monte Carlo algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the weakly singular stochastic Volterra integral equations with variable exponent. Firstly, the existence and uniqueness of the equations are studied by the Banach contraction mapping principle. Secondly, we develop an Euler–Maruyama (EM) method and obtain its strong convergence rate. Moreover, we propose a fast EM method via the exponential-sum-approximation technique to reduce the EM method’s computational cost. More specifically, if one disregards the Monte Carlo sampling error, then the fast EM method reduces the computational cost from O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2)$$\end{document} to O(Nlog2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N\log ^{2} N)$$\end{document} and the storage from O(N) to O(log2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^{2} N)$$\end{document}, where N is the total number of time steps. Moreover, if the sampling error is taken into account, we employ the multilevel Monte Carlo method based on the fast EM method to reduce computational costs further. Significantly, the computational costs of the EM method and the fast EM method to achieve an accuracy of O(ε) (ε < 1) are reduced from O(ε-2-2α~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-2-\frac {2}{\widetilde {\alpha }}})$$\end{document} and O(ε-2-1α~log2(ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-2-\frac {1}{\widetilde {\alpha }}}\log ^{2}(\varepsilon ))$$\end{document}, respectively, to O(ε-1α~(log(ε-1))3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (\varepsilon ^{-\frac {1}{\widetilde {\alpha }}} (\log (\varepsilon ^{-1}))^{3}\Big )$$\end{document}, where α~=min{1-α*,12-β*}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde {\alpha }=\min \limits \{1-\alpha ^{\ast }, \frac 12-\beta ^{\ast }\}$$\end{document} is related to the exponents of the singular kernel in the equations. Finally, numerical examples are provided to illustrate our theoretical results and demonstrate the superiority of the fast EM method.
引用
收藏
页码:2433 / 2455
页数:22
相关论文
共 62 条
[21]  
Xiao Y(2022)Exponential-sum-approximation technique for variable-order time-fractional diffusion equations J. Appl. Math. Comput. 68 323-462
[22]  
Shi JN(2022)A fast algorithm for simulation of rough volatility models Quant. Finance 22 447-617
[23]  
Yang ZW(2008)Multilevel Monte Carlo path simulation Oper. Res. 56 607-149
[24]  
Dai X(2010)Approximation by exponential sums revisited Appl. Comput. Harmon. Anal. 28 131-undefined
[25]  
Bu W(undefined)undefined undefined undefined undefined-undefined
[26]  
Xiao A(undefined)undefined undefined undefined undefined-undefined
[27]  
Dai X(undefined)undefined undefined undefined undefined-undefined
[28]  
Xiao A(undefined)undefined undefined undefined undefined-undefined
[29]  
Richard A(undefined)undefined undefined undefined undefined-undefined
[30]  
Tan X(undefined)undefined undefined undefined undefined-undefined