Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent

被引:0
作者
Min Li
Xinjie Dai
Chengming Huang
机构
[1] China University of Geosciences,School of Mathematics and Physics and Center for Mathematical Sciences
[2] Academy of Mathematics and Systems Science,Institute of Computational Mathematics, Scientific/Engineering Computing
[3] Chinese Academy of Sciences,School of Mathematics and Statistics and Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[4] Huazhong University of Science and Technology,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Weakly singular stochastic Volterra integral equations with variable exponent; Exponential-sum-approximation; Euler–Maruyama method; Fast Euler–Maruyama method; Strong convergence; Multilevel Monte Carlo algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the weakly singular stochastic Volterra integral equations with variable exponent. Firstly, the existence and uniqueness of the equations are studied by the Banach contraction mapping principle. Secondly, we develop an Euler–Maruyama (EM) method and obtain its strong convergence rate. Moreover, we propose a fast EM method via the exponential-sum-approximation technique to reduce the EM method’s computational cost. More specifically, if one disregards the Monte Carlo sampling error, then the fast EM method reduces the computational cost from O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2)$$\end{document} to O(Nlog2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N\log ^{2} N)$$\end{document} and the storage from O(N) to O(log2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^{2} N)$$\end{document}, where N is the total number of time steps. Moreover, if the sampling error is taken into account, we employ the multilevel Monte Carlo method based on the fast EM method to reduce computational costs further. Significantly, the computational costs of the EM method and the fast EM method to achieve an accuracy of O(ε) (ε < 1) are reduced from O(ε-2-2α~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-2-\frac {2}{\widetilde {\alpha }}})$$\end{document} and O(ε-2-1α~log2(ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-2-\frac {1}{\widetilde {\alpha }}}\log ^{2}(\varepsilon ))$$\end{document}, respectively, to O(ε-1α~(log(ε-1))3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (\varepsilon ^{-\frac {1}{\widetilde {\alpha }}} (\log (\varepsilon ^{-1}))^{3}\Big )$$\end{document}, where α~=min{1-α*,12-β*}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde {\alpha }=\min \limits \{1-\alpha ^{\ast }, \frac 12-\beta ^{\ast }\}$$\end{document} is related to the exponents of the singular kernel in the equations. Finally, numerical examples are provided to illustrate our theoretical results and demonstrate the superiority of the fast EM method.
引用
收藏
页码:2433 / 2455
页数:22
相关论文
共 62 条
[1]  
Berger MA(1980)Volterra equations with itô integrals I. J. Integral Eq. 2 187-245
[2]  
Mizel VJ(1980)Volterra equations with itô integrals II J. Integral Eq. 2 319-337
[3]  
Berger MA(1985)Volterra equations driven by semimartingales Ann. Probab. 13 519-530
[4]  
Mizel VJ(2008)Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients Statist. Probab. Lett. 78 1062-1071
[5]  
Protter P(2008)Euler schemes and large deviations for stochastic Volterra equations with singular kernels J. Differential Eq. 244 2226-2250
[6]  
Wang Z(2021)Asymptotic separation for stochastic Volterra integral equations with doubly singular kernels Appl. Math. Lett. 113 106880-7
[7]  
Zhang X(2021)Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations J. Comput. Appl. Math. 382 113077-14
[8]  
Li M(2022)A two-parameter Milstein method for stochastic Volterra integral equations J. Comput. Appl. Math. 404 113870-20
[9]  
Huang C(2017)Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations J. Comput. Appl. Math. 317 447-457
[10]  
Hu Y(2018)Split-step collocation methods for stochastic Volterra integral equations J. Integral Eq. Appl. 30 197-218