Improper affine hyperspheres with self-congruent center map

被引:0
作者
Houda Trabelsi
机构
[1] Université de Valenciennes,
来源
Monatshefte für Mathematik | 2007年 / 152卷
关键词
2000 Mathematics Subject Classification: 53A15; Key words: Affine differential geometry, Monge-Ampère equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study n-dimensional improper affine spheres of which the center map is congruent to the original immersion. We show how to construct such hypersurfaces starting from (n − 1)-dimensional proper elliptic affine hyperspheres. We also show that they correspond to solutions of the Monge-Ampère equations which are homogeneous of degree 2.
引用
收藏
页码:73 / 81
页数:8
相关论文
共 13 条
[1]  
Baues O(2001)Realisation of special Kähler manifolds as parabolic sphere Proc Amer Math Soc 129 2403-2407
[2]  
Cortés V(2006)The center map of an affine immersion Results Math 49 201-217
[3]  
Furuhata F(2004)Centroaffine Bernstein problems Differential Geom Appl 20 331-356
[4]  
Vrancken L(1991)Canonical centroaffine hypersurfaces in Results Math 20 660-681
[5]  
Li AM(1995)The centroaffine Tchebychev operator Results Math 27 77-92
[6]  
Li H(1996)Isometric immersions of warped products Differential Geom Appl 6 1-30
[7]  
Simon U(2002)Three dimensional affine hyperspheres generated by two dimensional partial differential equations Math Nachr 237 129-146
[8]  
Li AM(undefined)undefined undefined undefined undefined-undefined
[9]  
Wang CP(undefined)undefined undefined undefined undefined-undefined
[10]  
Liu HL(undefined)undefined undefined undefined undefined-undefined