PT-Symmetric Solutions of Schrödinger Equation with Position-Dependent Mass via Point Canonical Transformation

被引:0
|
作者
Cevdet Tezcan
Ramazan Sever
机构
[1] Başkent University,Faculty of Engineering
[2] Middle East Technical University,Department of Physics
关键词
Position-dependent mass; Point canonical transformation; Effective mass Schrödinger equation; Generalized harmonic oscillator; Scarf potential;
D O I
暂无
中图分类号
学科分类号
摘要
PT-symmetric solutions of Schrödinger equation are obtained for the Scarf and generalized harmonic oscillator potentials with the position-dependent mass. A general point canonical transformation is applied by using a free parameter. Three different forms of mass distributions are used. A set of the energy eigenvalues of the bound states and corresponding wave functions for target potentials are obtained as a function of the free parameter.
引用
收藏
页码:1471 / 1478
页数:7
相关论文
共 50 条
  • [21] Position-dependent mass Schrödinger equation for exponential-type potentials
    G. Ovando
    J. J. Peña
    J. Morales
    J. López-Bonilla
    Journal of Molecular Modeling, 2019, 25
  • [22] Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials
    Jia, Chun-Sheng
    Dutra, A. de Souza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38): : 11877 - 11887
  • [23] Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass
    Jia, Chun-Sheng
    Dutra, A. de Souza
    ANNALS OF PHYSICS, 2008, 323 (03) : 566 - 579
  • [24] Analytic Results in the Position-Dependent Mass Schrdinger Problem
    M.S.Cunha
    H.R.Christiansen
    CommunicationsinTheoreticalPhysics, 2013, 60 (12) : 642 - 650
  • [25] Comment on 'Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials'
    Mustafa, Omar
    Mazharimousavi, S. Habib
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (04) : 863 - 865
  • [26] Schrödinger equation with singular position dependent mass
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (1-2): : 131 - 144
  • [27] Variational Principle for a Schrdinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
    A.R.Plastino
    C.Vignat
    A.Plastino
    CommunicationsinTheoreticalPhysics, 2015, 63 (03) : 275 - 278
  • [28] Algebraic structures and position-dependent mass Schrödinger equation from group entropy theory
    Ignacio S. Gomez
    Ernesto P. Borges
    Letters in Mathematical Physics, 2021, 111
  • [29] Generation of exactly solvable potentials of the D-dimensional position-dependent mass Schrödinger equation using the transformation method
    H. Rajbongshi
    N. N. Singh
    Theoretical and Mathematical Physics, 2015, 183 : 715 - 729
  • [30] Soliton and rogue wave solutions of the space–time fractional nonlinear Schrödinger equation with PT-symmetric and time-dependent potentials
    Manikandan K.
    Aravinthan D.
    Sudharsan J.B.
    Reddy S.R.R.
    Optik, 2022, 266