A 17-node quadrilateral spline finite element using the triangular area coordinates

被引:0
|
作者
Juan Chen
Chong-jun Li
Wan-ji Chen
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Dalian University of Technology,State Key Laboratory for Structural Analysis of Industrial Equipment
[3] Shenyang Institute of Aeronautical Engineering,Institute for Structural Analysis of Aerocraft
来源
关键词
17-node quadrilateral element; bivariate spline interpolation basis; triangular area coordinates; B-net method; fourth-order completeness; O241; O343; 65D07; 74S05;
D O I
暂无
中图分类号
学科分类号
摘要
Isoparametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17-node quadrilateral element has been developed using the bivariate quartic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
  • [11] On the vibration and buckling analysis of quadrilateral and triangular nanoplates using nonlocal spline finite strip method
    Analooei, H. R.
    Azhari, M.
    Sarrami-Foroushani, S.
    Heidarpour, A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (04)
  • [12] Development of eight-node quadrilateral membrane elements using the area coordinates method
    Soh, AK
    Long, YQ
    Cen, S
    COMPUTATIONAL MECHANICS, 2000, 25 (04) : 376 - 384
  • [13] Development of eight-node quadrilateral membrane elements using the area coordinates method
    Ai-Kah S.
    Yuqiu L.
    Song C.
    Computational Mechanics, 2000, 25 (4) : 376 - 384
  • [14] QUADRILATERAL ISOPARAMETRIC FINITE-ELEMENT WITH CENTRAL NODE
    STEFANOV, I
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1991, 7 (05): : 403 - 409
  • [15] Incompatible modes with Cartesian coordinates and application in quadrilateral finite element formulation
    Xia, Yang
    Zheng, Guojun
    Hu, Ping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (02): : 859 - 875
  • [16] Incompatible modes with Cartesian coordinates and application in quadrilateral finite element formulation
    Yang Xia
    Guojun Zheng
    Ping Hu
    Computational and Applied Mathematics, 2017, 36 : 859 - 875
  • [17] ADAPTIVE QUADRILATERAL AND TRIANGULAR FINITE-ELEMENT SCHEME FOR COMPRESSIBLE FLOWS
    RAMAKRISHNAN, R
    BEY, KS
    THORNTON, EA
    AIAA JOURNAL, 1990, 28 (01) : 51 - 59
  • [19] AUTOMATIC CONVERSION OF TRIANGULAR FINITE-ELEMENT MESHES TO QUADRILATERAL ELEMENTS
    JOHNSTON, BP
    SULLIVAN, JM
    KWASNIK, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (01) : 67 - 84
  • [20] B-spline finite-element method in polar coordinates
    Li, RL
    Ni, GZ
    Yu, JH
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1998, 28 (04) : 337 - 346