A 17-node quadrilateral spline finite element using the triangular area coordinates

被引:0
|
作者
Juan Chen
Chong-jun Li
Wan-ji Chen
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Dalian University of Technology,State Key Laboratory for Structural Analysis of Industrial Equipment
[3] Shenyang Institute of Aeronautical Engineering,Institute for Structural Analysis of Aerocraft
来源
关键词
17-node quadrilateral element; bivariate spline interpolation basis; triangular area coordinates; B-net method; fourth-order completeness; O241; O343; 65D07; 74S05;
D O I
暂无
中图分类号
学科分类号
摘要
Isoparametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17-node quadrilateral element has been developed using the bivariate quartic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
  • [1] A 17-node quadrilateral spline finite element using the triangular area coordinates
    Chen, Juan
    Li, Chong-jun
    Chen, Wan-ji
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (01) : 125 - 134
  • [2] A 17-node quadrilateral spline finite element using the triangular area coordinates
    陈娟
    李崇君
    陈万吉
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (01) : 125 - 134
  • [3] A 12-node non-convex quadrilateral spline element by area coordinates interpolation
    Chen, J. (chenjdufe@163.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (10):
  • [4] A new 8-node quadrilateral spline finite element
    Li, Chong-Jun
    Wang, Ren-Hong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) : 54 - 65
  • [5] Numerical integration over polygons using an eight-node quadrilateral spline finite element
    Li, Chong-Jun
    Lamberti, Paola
    Dagnino, Catterina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 279 - 292
  • [6] Finite-part integrals over polygons by an 8-node quadrilateral spline finite element
    Chong-Jun Li
    Vittoria Demichelis
    Catterina Dagnino
    BIT Numerical Mathematics, 2010, 50 : 377 - 394
  • [7] Finite-part integrals over polygons by an 8-node quadrilateral spline finite element
    Li, Chong-Jun
    Demichelis, Vittoria
    Dagnino, Catterina
    BIT NUMERICAL MATHEMATICS, 2010, 50 (02) : 377 - 394
  • [8] Development of a new quadrilateral thin plate element using area coordinates
    Soh, AK
    Long, ZF
    Cen, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (8-10) : 979 - 987
  • [9] Area coordinates and B-net method for quadrilateral spline elements
    Chen, Juan
    Li, Chongjun
    Chen, Wanji
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (01): : 83 - 92
  • [10] On the vibration and buckling analysis of quadrilateral and triangular nanoplates using nonlocal spline finite strip method
    H. R. Analooei
    M. Azhari
    S. Sarrami-Foroushani
    A. Heidarpour
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42