Primal-Dual Newton-Type Interior-Point Method for Topology Optimization

被引:0
作者
R.H.W. Hoppe
S.I. Petrova
V. Schulz
机构
[1] University of Augsburg,Institute of Mathematics
[2] Bulgarian Academy of Sciences,Central Laboratory for Parallel Processing
[3] University of Trier,Department of Mathematics
来源
Journal of Optimization Theory and Applications | 2002年 / 114卷
关键词
Eddy current equations; topology optimization; nonlinear programming; primal-dual interior-point methods; watchdog strategy;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of minimization of energy dissipation in a conductive electromagnetic medium with a fixed geometry and a priori given lower and upper bounds for the conductivity. The nonlinear optimization problem is analyzed by using the primal-dual Newton interior-point method. The elliptic differential equation for the electric potential is considered as an equality constraint. Transforming iterations for the null space decomposition of the condensed primal-dual system are applied to find the search direction. The numerical experiments treat two-dimensional isotropic systems.
引用
收藏
页码:545 / 571
页数:26
相关论文
共 45 条
[1]  
Beck R.(1999)' Surveys on Mathematics for Industry 8 271-312
[2]  
Deuflhard P.(2000)- Structural Optimization 19 214-224
[3]  
Hiptmair R.(1992)- SIAM Journal on Optimization 2 304-324
[4]  
Hoppe R. H. W.(1994)- SIAM Review 36 45-72
[5]  
Wohlmuth B.(1996)- Journal of Optimization Theory and Applications 89 507-541
[6]  
Maar B.(1998)Primal-Dual Interior Methods for Nonconvex Nonlinear Programming SIAM Journal on Optimization 8 1132-1152
[7]  
Schulz V.(1998)- SIAM Journal on Optimization 8 746-768
[8]  
Zhang Y.(2000): SIAM Journal on Applied Mathematics 60 1805-1823
[9]  
Tapia R. A.(1995), IEEE Transactions on Magnetics 31 1307-1312
[10]  
Dennis J.(1998), SIAM Journal on Optimization 9 84-111