Bending of an Elastic Rectangular Clamped Plate: Exact Versus ‘Engineering’ Solutions

被引:0
作者
V.V. Meleshko
机构
[1] University of Illinois at Urbana-Champaign,Department of Theoretical and Applied Mechanics
来源
Journal of Elasticity | 1997年 / 48卷
关键词
clamped rectangular plate; method of superposition;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the fascinating long history of the classical problem of bending of a thin rectangular elastic plate with clamped edges by uniform pressure. Among various mathematical and engineering approaches, a method of superposition proposed by Lamé (1852, 1859) and Mathieu (1881, 1890) and developed by the mathematician Koialovich (1902) and engineers Boobnoff (1902, 1914), Hencky (1913) and Inglis (1925) appears to be very useful for the analysis of distribution of stresses and deflection inside a plate. The object of this paper is both to clarify some purely mathematical questions connected with the solution of the infinite systems of linear algebraic equations and to provide a considerable simplification of the numerical algorithm.
引用
收藏
页码:1 / 50
页数:49
相关论文
共 113 条
[1]  
Boobnoff I.G.(1902)On the stresses in a ship's bottom plating due to water pressure Trans. Instn nav. Archit. 44 15-52
[2]  
Inglis C.E.(1925)Stresses in rectangular plates clamped at their edges and loaded with a uniformly distributed pressure Trans. Instn nav. Archit. 67 147-165
[3]  
Love A.E.H.(1928)Biharmonic analysis, especially in a rectangle, and its application to the theory of elasticity J. Lond. math. Soc. 3 144-156
[4]  
Dixon A.C.(1934)The problem of the rectangular plate J. Lond. math. Soc. 9 61-74
[5]  
Meleshko V.V.(1995)Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited J. Elasticity 40 207-238
[6]  
Föppl L.(1921)Neuere Fortschritte der technischen Elastizitätstheorie Z. angew. Math. Mech. 1 466-481
[7]  
Westergaard H.M.(1921)Moments and stresses in slabs Proc. Am. Concr. Inst. 17 415-538
[8]  
Slater W.A.(1905)Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion Z. Math. Phys. 52 348-383
[9]  
Timpe A.(1907)Spezielle Ausführungen zur Statik elastischer Körper Encyklop. math. Wissensch. IV 125-214
[10]  
Tedone O.(1916)Moments et flèches des plaques rectangulaires minces, portant une charge uniformément répartie Ann. Ponts Chauss. 33 313-438